正态分布的线性组合与独立性:全面讲解
创作时间:
作者:
@小白创作中心
正态分布的线性组合与独立性:全面讲解
引用
CSDN
1.
https://blog.csdn.net/weidl001/article/details/144325531
正态分布是概率论与数理统计中的重要分布之一,其线性组合与独立性的性质在许多理论和应用中都非常关键。本文将从正态分布的定义出发,详细讲解其线性组合的性质、独立性的影响以及概率计算方法,帮助读者全面理解这一重要知识点。
正态分布的定义
若随机变量 $X$ 服从正态分布,记为 $X \sim N(\mu, \sigma^2)$,其概率密度函数为:
$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
$$
其中:
- $\mu$:均值,决定分布的中心位置。
- $\sigma^2$:方差,决定分布的宽度(波动性)。
正态分布的线性组合
定理:正态分布线性组合仍服从正态分布
若 $X_1 \sim N(\mu_1, \sigma_1^2)$,$X_2 \sim N(\mu_2, \sigma_2^2)$,且 $X_1$ 和 $X_2$ 相互独立,则它们的线性组合:
$$
Y = aX_1 + bX_2 + c
$$
也服从正态分布,记为:
$$
Y \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)
$$
证明:
- 均值的线性性:
- 随机变量的均值具有线性性:
$$
E(aX_1 + bX_2 + c) = aE(X_1) + bE(X_2) + c
$$
所以,均值为:$a\mu_1 + b\mu_2 + c$。
- 方差的独立性加和:
- 对于相互独立的随机变量,其线性组合的方差为各分量方差的加权和:
$$
\text{Var}(aX_1 + bX_2 + c) = a^2\text{Var}(X_1) + b^2\text{Var}(X_2)
$$
即:$a^2\sigma_1^2 + b^2\sigma_2^2$。
- 正态分布的闭包性:
- 由于正态分布是“闭合的”,即正态分布的任意线性组合仍是正态分布,因此:
$$
Y \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)
$$
特殊情况:
- 如果 $Y = X_1 + X_2$:
- 均值:$E(Y) = \mu_1 + \mu_2$
- 方差:$\text{Var}(Y) = \sigma_1^2 + \sigma_2^2$
- $Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- 如果 $Y = X_1 - X_2$:
- 均值:$E(Y) = \mu_1 - \mu_2$
- 方差:$\text{Var}(Y) = \sigma_1^2 + \sigma_2^2$
- $Y \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$
独立性对线性组合的影响
定理:独立性保证方差的简单加和
若 $X_1$ 和 $X_2$ 相互独立,则它们的协方差为零,即:
$$
\text{Cov}(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2) = 0
$$
因此,线性组合的方差只与各分量的方差有关,不涉及交叉项。
非独立情形:
- 如果 $X_1$ 和 $X_2$ 不是独立随机变量,则需要考虑协方差:
$$
\text{Var}(aX_1 + bX_2) = a^2\text{Var}(X_1) + b^2\text{Var}(X_2) + 2ab\text{Cov}(X_1, X_2)
$$
例子:
- 独立情况:
- $X_1 \sim N(0, 1)$,$X_2 \sim N(1, 4)$,独立。
- $Y = 2X_1 + 3X_2$:
- 均值:$E(Y) = 2E(X_1) + 3E(X_2) = 2 \cdot 0 + 3 \cdot 1 = 3$
- 方差:$\text{Var}(Y) = 2^2\text{Var}(X_1) + 3^2\text{Var}(X_2) = 4 + 27 = 31$
- $Y \sim N(3, 31)$
- 非独立情况:
- $X_1 \sim N(0, 1)$,$X_2 \sim N(1, 4)$,且 $\text{Cov}(X_1, X_2) = 2$。
- $Y = 2X_1 + 3X_2$:
- 均值:$E(Y) = 3$(不变)
- 方差:$\text{Var}(Y) = 4 + 27 + 2 \cdot 2 \cdot 3 = 39$
- $Y \sim N(3, 39)$
正态分布的概率计算
标准正态分布:
- 若 $Z \sim N(0, 1)$,则标准正态分布的概率表可用于快速计算。
- 性质:
- $P(Z \leq 0) = 0.5$
- $P(Z \leq z) = 1 - P(Z > z)$
非标准正态分布:
- 若 $X \sim N(\mu, \sigma^2)$,可以通过标准化转换为标准正态分布:
$$
Z = \frac{X - \mu}{\sigma} \sim N(0, 1)
$$
应用:
- 对于 $P(X \leq c)$,标准化为 $P\left(Z \leq \frac{c - \mu}{\sigma}\right)$,利用正态分布表或计算工具求解。
总结
- 正态分布的线性组合是正态分布,独立性使得方差可以简单加和。
- 标准化是处理正态分布概率问题的重要工具。
- 非独立情况下需要考虑协方差对方差的贡献。
- 重点公式:
- 线性组合:$Y = aX_1 + bX_2 + c \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$
- 标准化:$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$
热门推荐
2025年煤炭行业分析:供需紧平衡下的价值资产机遇
一个经常“心慌”的人,问题可能不只在心脏!5 种情况要提高警惕
行测考试备考,定义判断之多定义题型的解题技巧有哪些?
iPhone进水却不给保修,手机防水真成了鸡肋?
烟熏火腿加工技术详解
发现了延长周末的神奇方法!
日本法学留学回国后的前途展望:挑战与机遇并存
全国近7000万女性终生无子,孤独感正“杀死”现代年轻人
2025年欧洲最适合居住的国家:生活品质与经济承受能力的完美平衡
气候异常监测丨拉尼娜来了?
视觉洞察 | 看过这些设计,才明白什么叫超级符号就是超级创意!
NVIDIA A100显卡深度解析:硬件组成与功能详解
震撼历史的转折点:揭秘日本偷袭珍珠港的真相与影响
一百亿与万龙甲:解码《哪吒2》背后的成都文创崛起之路
酸枣叶茶的功效与作用、禁忌和食用方法
如何了解医院的医疗水平并做出恰当的就医决策?这种就医决策如何考虑患者需求?
护理部主任告诉你:在医院工作,究竟进哪个科室最好?
国庆节后A股走势深度分析
社会工作服务为什么需要项目化
室内设计如何为人们营造舒适感?
非洲版新加坡:卢旺达如何掀起投资兴业热潮?
家装行业深度分析:整装模式崛起,行业集中度提升
世界最大跨径公轨两用悬索桥主塔封顶,重庆黄桷沱长江大桥建设取得重大进展
职场提升:7步打造你的个人竞争力
“可能到150亿”!连创纪录,爆米花都供应不上!海外也“抢疯了”……
湖北黄梅打造158公里多彩旅游路,春节8天接待游客81万人次
Query2doc:基于大语言模型的查询改写方法
前端应用如何做副业
股票的K线是什么?K线图如何进行分析?
从感知到认知 | 智能交通视觉技术最新综述