正态分布的线性组合与独立性:全面讲解
创作时间:
作者:
@小白创作中心
正态分布的线性组合与独立性:全面讲解
引用
CSDN
1.
https://blog.csdn.net/weidl001/article/details/144325531
正态分布是概率论与数理统计中的重要分布之一,其线性组合与独立性的性质在许多理论和应用中都非常关键。本文将从正态分布的定义出发,详细讲解其线性组合的性质、独立性的影响以及概率计算方法,帮助读者全面理解这一重要知识点。
正态分布的定义
若随机变量 $X$ 服从正态分布,记为 $X \sim N(\mu, \sigma^2)$,其概率密度函数为:
$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
$$
其中:
- $\mu$:均值,决定分布的中心位置。
- $\sigma^2$:方差,决定分布的宽度(波动性)。
正态分布的线性组合
定理:正态分布线性组合仍服从正态分布
若 $X_1 \sim N(\mu_1, \sigma_1^2)$,$X_2 \sim N(\mu_2, \sigma_2^2)$,且 $X_1$ 和 $X_2$ 相互独立,则它们的线性组合:
$$
Y = aX_1 + bX_2 + c
$$
也服从正态分布,记为:
$$
Y \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)
$$
证明:
- 均值的线性性:
- 随机变量的均值具有线性性:
$$
E(aX_1 + bX_2 + c) = aE(X_1) + bE(X_2) + c
$$
所以,均值为:$a\mu_1 + b\mu_2 + c$。
- 方差的独立性加和:
- 对于相互独立的随机变量,其线性组合的方差为各分量方差的加权和:
$$
\text{Var}(aX_1 + bX_2 + c) = a^2\text{Var}(X_1) + b^2\text{Var}(X_2)
$$
即:$a^2\sigma_1^2 + b^2\sigma_2^2$。
- 正态分布的闭包性:
- 由于正态分布是“闭合的”,即正态分布的任意线性组合仍是正态分布,因此:
$$
Y \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)
$$
特殊情况:
- 如果 $Y = X_1 + X_2$:
- 均值:$E(Y) = \mu_1 + \mu_2$
- 方差:$\text{Var}(Y) = \sigma_1^2 + \sigma_2^2$
- $Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- 如果 $Y = X_1 - X_2$:
- 均值:$E(Y) = \mu_1 - \mu_2$
- 方差:$\text{Var}(Y) = \sigma_1^2 + \sigma_2^2$
- $Y \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$
独立性对线性组合的影响
定理:独立性保证方差的简单加和
若 $X_1$ 和 $X_2$ 相互独立,则它们的协方差为零,即:
$$
\text{Cov}(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2) = 0
$$
因此,线性组合的方差只与各分量的方差有关,不涉及交叉项。
非独立情形:
- 如果 $X_1$ 和 $X_2$ 不是独立随机变量,则需要考虑协方差:
$$
\text{Var}(aX_1 + bX_2) = a^2\text{Var}(X_1) + b^2\text{Var}(X_2) + 2ab\text{Cov}(X_1, X_2)
$$
例子:
- 独立情况:
- $X_1 \sim N(0, 1)$,$X_2 \sim N(1, 4)$,独立。
- $Y = 2X_1 + 3X_2$:
- 均值:$E(Y) = 2E(X_1) + 3E(X_2) = 2 \cdot 0 + 3 \cdot 1 = 3$
- 方差:$\text{Var}(Y) = 2^2\text{Var}(X_1) + 3^2\text{Var}(X_2) = 4 + 27 = 31$
- $Y \sim N(3, 31)$
- 非独立情况:
- $X_1 \sim N(0, 1)$,$X_2 \sim N(1, 4)$,且 $\text{Cov}(X_1, X_2) = 2$。
- $Y = 2X_1 + 3X_2$:
- 均值:$E(Y) = 3$(不变)
- 方差:$\text{Var}(Y) = 4 + 27 + 2 \cdot 2 \cdot 3 = 39$
- $Y \sim N(3, 39)$
正态分布的概率计算
标准正态分布:
- 若 $Z \sim N(0, 1)$,则标准正态分布的概率表可用于快速计算。
- 性质:
- $P(Z \leq 0) = 0.5$
- $P(Z \leq z) = 1 - P(Z > z)$
非标准正态分布:
- 若 $X \sim N(\mu, \sigma^2)$,可以通过标准化转换为标准正态分布:
$$
Z = \frac{X - \mu}{\sigma} \sim N(0, 1)
$$
应用:
- 对于 $P(X \leq c)$,标准化为 $P\left(Z \leq \frac{c - \mu}{\sigma}\right)$,利用正态分布表或计算工具求解。
总结
- 正态分布的线性组合是正态分布,独立性使得方差可以简单加和。
- 标准化是处理正态分布概率问题的重要工具。
- 非独立情况下需要考虑协方差对方差的贡献。
- 重点公式:
- 线性组合:$Y = aX_1 + bX_2 + c \sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$
- 标准化:$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$
热门推荐
完美喵生,一定要握紧猫草
心学问心理教育,心灵之旅:青春期孩子如何探索自我,实现内在成长
高寒地区气膜结构的保温性能保障
不是人力资源专业怎么办
重庆十大火锅类型大盘点:从传统到创新,总有一款适合你
中华茶文化对增强民族共同体意识和凝聚力的历史贡献
学校如何鼓励学生在校园欺凌问题上合作
NSCLC 围术期治疗新变革,KEYNOTE-671 方案助力患者长生存
量子壮举:物理学家首次观察到纠缠夸克
不再拘泥于传统金融业态,金融的功能开始升级
马云:金融体系需要面向未来,而非一味追赶
九里山古战场:岁月沉淀的历史画卷 📜
大人尿床的原因及调理方法分别是什么
一群留岗外卖骑手的新年账单
四柱八字中的财富格局判断
智慧灌溉技术:从理论到实践,助力农业可持续发展
塑料包装材料四大主角:PE、HDPE、PP、PVC的性能与用途全解析
逐日之旅:从仰望到探测,太阳为何成为人类的探索焦点?
电磁屏蔽机房(屏蔽室)建设的国家标准
雷军:这样回应“谢谢”,才是高情商
AI时代下普通人的10种赚钱新机遇
鱼缸中火山石使用须知:为何不建议作为底材
解密青春期,被理解和看见的力量!
牙根疼痛吃什么药效果最好
电影观后感《哆啦A梦:大雄的地球交响乐》
疾控中心提醒!这些人群需要接种狂犬病疫苗
湖南自驾游精品指南:穿梭于山水之间,感受独特魅力
扶摇“职”上,从“心”起航——大学生就业心理调适指南
善用巴纳姆效应,洞察真实的自己
肠粘膜损伤怎么修复吃什么药