问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

基于鼾声识别的睡眠呼吸暂停监测与体位干预系统设计

创作时间:
作者:
@小白创作中心

基于鼾声识别的睡眠呼吸暂停监测与体位干预系统设计

引用
1
来源
1.
https://www.hanspub.org/journal/paperinformation?paperid=105939

阻塞性睡眠呼吸暂停综合征(OSAS)是一种常见的睡眠障碍,不仅会影响睡眠质量,还可能引发多种健康问题。本文介绍了一种基于鼾声识别的睡眠呼吸暂停监测与体位干预系统,该系统通过智能枕头和手机APP协同工作,能够实时监测睡眠状态并进行个性化干预,为OSAS患者提供了一种非侵入式的治疗方案。

系统设计与原理

该系统由检测端和干预端两部分组成。检测端使用智能手机内置麦克风采集声音信号,通过卷积神经网络(CNN)模型识别鼾声和睡眠呼吸暂停事件。干预端则通过枕头中的气囊模块调整使用者的睡姿,以缓解OSAS症状。

检测端:鼾声识别模型

检测端的核心是基于梅尔频率倒谱系数(MFCC)和声压变化率(SPL)的卷积神经网络(CNN)模型。该模型能够准确区分正常呼吸、普通鼾声和与OSAS相关的鼾声。


图1. 体位干预枕结构图

干预端:智能枕头

干预端基于ESP32-WROOM-32E芯片实现,包含干预控制模块、头部位置判定模块和通信模块。通过蓝牙接收检测端传输的数据,并结合头部压力分布的反馈信息,动态调节枕头形状和高度,从而改变用户睡姿以缓解OSAS症状。

实验验证

研究团队在复旦大学附属中山医院进行了临床实验,选取了20名患有轻中度OSAS的患者进行测试。实验结果显示,经过3天的干预,16名患者的AHI(呼吸暂停低通气指数)显著下降,体位干预系统的治疗有效率为80%。


图2. AHI干预前后变化示意图

应用前景

该系统通过智能枕头和手机APP的协同工作,实现了对轻中度OSAS患者的非侵入式、个性化干预。实验结果表明,该系统不仅在干预有效性方面优于现有方法,还在用户舒适性方面表现出良好的反馈。未来的研究可进一步优化算法性能,拓展干预端的功能设计,并通过更大规模的临床实验验证系统的通用性和有效性。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号