YOLOv11融合FFCA-YOLO中的FEM模块以改进小目标检测
创作时间:
作者:
@小白创作中心
YOLOv11融合FFCA-YOLO中的FEM模块以改进小目标检测
引用
CSDN
1.
https://blog.csdn.net/StopAndGoyyy/article/details/143866491
FFCA-YOLO论文概述
论文《FFCA-YOLO for Small Object Detection in Remote Sensing Images》提出了一种针对遥感图像中小目标检测的高效检测器——FFCA-YOLO。该检测器通过引入三个创新模块来解决特征表示不足和背景混淆等问题:
- 特征增强模块(FEM):用于增强局部特征感知能力。
- 特征融合模块(FFM):用于实现多尺度特征融合。
- 空间上下文感知模块(SCAM):用于增强全局关联能力。
此外,为了优化计算效率,论文还提出了基于部分卷积(PConv)的轻量级版本L-FFCA-YOLO。
将FEM模块融入YOLOv11
1. 创建脚本文件
在ultralytics->nn
路径下创建blocks.py
脚本,用于存放FEM模块的代码。
2. 复制代码
将FEM模块的代码复制到blocks.py
中:
import torch
import torch.nn as nn
from ultralytics.nn.modules.conv import Conv
class BasicConv_FFCA(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
bn=True, bias=False):
super(BasicConv_FFCA, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class FEM(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, scale=0.1, map_reduce=8):
super(FEM, self).__init__()
self.scale = scale
self.out_channels = out_planes
inter_planes = in_planes // map_reduce
self.branch0 = nn.Sequential(
BasicConv_FFCA(in_planes, 2 * inter_planes, kernel_size=1, stride=stride),
BasicConv_FFCA(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=1, relu=False)
)
self.branch1 = nn.Sequential(
BasicConv_FFCA(in_planes, inter_planes, kernel_size=1, stride=1),
BasicConv_FFCA(inter_planes, (inter_planes // 2) * 3, kernel_size=(1, 3), stride=stride, padding=(0, 1)),
BasicConv_FFCA((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=(3, 1), stride=stride, padding=(1, 0)),
BasicConv_FFCA(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
)
self.branch2 = nn.Sequential(
BasicConv_FFCA(in_planes, inter_planes, kernel_size=1, stride=1),
BasicConv_FFCA(inter_planes, (inter_planes // 2) * 3, kernel_size=(3, 1), stride=stride, padding=(1, 0)),
BasicConv_FFCA((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=(1, 3), stride=stride, padding=(0, 1)),
BasicConv_FFCA(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
)
self.ConvLinear = BasicConv_FFCA(6 * inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
self.shortcut = BasicConv_FFCA(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
out = self.ConvLinear(out)
short = self.shortcut(x)
out = out * self.scale + short
out = self.relu(out)
return out
3. 更改task.py文件
在ultralytics->nn->modules->task.py
中导入FEM模块:
from ultralytics.nn.blocks import *
在模型解析函数parse_model
中添加FEM模块的解析代码:
elif m is FEM:
c2 = args[0]
args = [ch[f], *args]
4. 更改yaml文件
打开ultralytics/cfg/models/11/yolov11.yaml
文件,替换原有模块:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs

s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, FEM, [512]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
5. 修改train.py文件
创建训练脚本:
from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
if __name__ == '__main__':
model = YOLO(model='ultralytics/cfg/models/11/yolo11.yaml')
# model.load('yolov8n.pt')
model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
amp=True, mosaic=False, project='runs/train', name='exp')
按照上述步骤修改后,即可开始训练模型。
相关改进思路
FEM模块可以替换C2f、C3模块中的BottleNeck部分。具体的代码实现和自研模块的融合方法可以在相关群文件中找到。
热门推荐
深度解析费马大定理的历史与数学意义
解析个人低保政策:了解我国保障困难群众的措施
杭州上城区:历史名人喜欢把家安在这里!
全国科普日科普专家在行动——传承中医药文化 点亮校园新风采
税务顾问:结构性存款收益的增值税问题
谢林:被黑格尔遮蔽的光芒
如何卸载 Windows 11 中不需要的内置应用以获得最佳性能
美国独立战争:是否可视为英国内战的一场争议
中国钛白粉70年风雨兼程:产量稳居世界第一,品质比肩国际一流
吴厝夜市攻略:美食、购物与周边景点全解析
计算机网络拓扑配置与实际应用
冬季滑雪 当心“雪盲症”!
长期16+8轻断食使死亡率暴增91%?专家解读:关键不在于进食时间
番茄酱质检报告内容以及流程一览
《沁园春·长沙》的文学价值与影响
日程计划是什么?如何制定高效日程计划?日程计划的作用与应用场景
小米汽车试驾规定:驾龄满两年方可体验高性能模式
给孕妇上全麻,麻醉医生到底在担心什么?
电视柜材质选择与购买指南
Word插入分页符后设置下一页首行段落间距正常显示
汽车音响升级全攻略:从入门到发烧的声学革命
色彩理论基础:如何在室内设计中使用色彩理论?
真太阳时排盘和普通排盘一样吗?
美国留学生租房费用大概是多少
中外合作办学的多样形式及其特点
中学数学教学如何落实核心素养
10 个自信脱颖而出的骄傲动漫人物
服务器维护的重要性与系统性措施解析:保障稳定与安全的关键工作
事业单位养老金怎样计算
钢结构厂房对钢材的要求有什么?