格林函数计算的总态密度在能量积分上的确定性
创作时间:
作者:
@小白创作中心
格林函数计算的总态密度在能量积分上的确定性
引用
1
来源
1.
https://www.guanjihuan.com/archives/45681
在凝聚态物理和材料科学中,态密度(DOS)是一个重要的物理量,它描述了在给定能量范围内可占据的量子态数量。然而,在实际计算中,由于数值稳定性和物理效应的考虑,往往需要在能量上引入虚部。本文通过具体的代码示例和运行结果,验证了格林函数计算的总态密度在能量积分上的确定性,并讨论了虚部大小对计算结果的影响。
在真实体系中,态密度(DOS)的严格数学定义是一个无展宽的分布(如 δ 函数求和),但在实际计算或实验中,由于物理效应和测量限制,总会存在一定的能量展宽。数值计算中引入的虚部 η 正是为了模拟这些展宽效应,同时也可以确保数值计算的稳定性。
在引入能量虚部后,态密度在能量上存在一定的展宽。展宽越宽,态密度的峰值越低;展宽越窄,态密度的峰值越高。这导致了计算的结果除了归一化后的分布具有一定的意义,而具体数值并不代表任何含义。本篇主要做数值验证,并指出:虽然在某个能量或者某个空间位置的具体态密度数值没有意义,但是其在能量维度上的积分是具有确定性的,即为体系的总状态数。
同样以方格子为例,代码为:
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/45681
"""
import numpy as np
def hamiltonian(width=2, length=2): # 方格子哈密顿量
h = np.zeros((width*length, width*length))
# y方向的跃迁
for x in range(length):
for y in range(width-1):
h[x*width+y, x*width+y+1] = 1
h[x*width+y+1, x*width+y] = 1
# x方向的跃迁
for x in range(length-1):
for y in range(width):
h[x*width+y, (x+1)*width+y] = 1
h[(x+1)*width+y, x*width+y] = 1
return h
def total_DOS_for_Fermi_energy_array(Fermi_energy_array, h, broadening):
dim_energy = Fermi_energy_array.shape[0]
dim = h.shape[0]
total_DOS_array = np.zeros((dim_energy))
i0 = 0
for Fermi_energy in Fermi_energy_array:
green = np.linalg.inv((Fermi_energy+broadening*1j)*np.eye(dim)-h)
total_DOS = -np.trace(np.imag(green))/np.pi # 通过格林函数求得总态密度
total_DOS_array[i0] = total_DOS
i0 += 1
return total_DOS_array
def main():
plot_precision = 0.0001 # 画图的精度/积分的精度
Fermi_energy_array = np.arange(-5, 5, plot_precision)
h = hamiltonian()
for broadening in [0.5, 0.1, 0.01, 0.001, 0.0001]:
total_DOS_array = total_DOS_for_Fermi_energy_array(Fermi_energy_array, h, broadening)
sum_up = np.sum(total_DOS_array)*plot_precision
print(f'Broadening为{broadening}时的积分结果:{sum_up}')
if __name__ == '__main__':
main()
运行结果(plot_precision = 0.0001 # 画图的精度/积分的精度):
Broadening为0.5时的积分结果:3.722565274835012
Broadening为0.1时的积分结果:3.944231849213829
Broadening为0.01时的积分结果:3.9944220100670997
Broadening为0.001时的积分结果:3.9994421998396357
Broadening为0.0001时的积分结果:4.014911712780062
运行结果(plot_precision = 0.001 # 画图的精度/积分的精度):
Broadening为0.5时的积分结果:3.72256527200912
Broadening为0.1时的积分结果:3.9442318486167713
Broadening为0.01时的积分结果:3.994422009997701
Broadening为0.001时的积分结果:4.014409692612366
Broadening为0.0001时的积分结果:13.148488227594502
运行结果(plot_precision = 0.01 # 画图的精度/积分的精度):
Broadening为0.5时的积分结果:3.7225649903254823
Broadening为0.1时的积分结果:3.944231789945488
Broadening为0.01时的积分结果:4.009389496911136
Broadening为0.001时的积分结果:13.147986206850222
Broadening为0.0001时的积分结果:127.36578383963219
结论:
- 格林函数计算的总态密度在能量积分上具有确定性,为体系的总状态数,这里状态数为 4。
- 当 broadening 太小时,这时候需要比较高的积分精度才可以算到准确的数值。
- 当 broadening 太大时,即使有比较高的积分精度也算不到准确的数值,这是因为不同能级的展宽之间出现交叠,具体参考:用格林函数计算态密度时费米能中虚部的取值。
- 在实际计算中,可以把这个总态密度在能量上积分结果作为判断能量虚部 η 大小选取的合理性。
热门推荐
2024年龙年春晚:家国同构的文化盛宴
从熊猫基地到春晚舞台:谭爷爷的25年坚守
南海影视城探秘:劲辣小鱼仔陪你玩转深秋
南海影视城:穿越时空的文化之旅
南海影视城:从影视基地到旅游胜地
南海影视城:打卡《大帅哥》拍摄地!
养血清脑颗粒:改善亚健康的中成药选择
养血清脑颗粒:职场人必备的“头痛克星”
从云南卫视到央视:主持人崔爽的语言艺术之路
新老交替,活力绽放:2024央视春晚主持人阵容引发热议
9部电影定档春节!喜剧片占主导,平均票价降至51元
悄无声息的流行病——骨质疏松症
第三轮“双一流”扩容在即!哪些高校有望入选?
作为中国人,连中国的“十大糕点”都不知道,是不是有点尴尬?
双十一熬夜剁手?《黄帝内经》教你如何“不妄作劳”
《黄帝内经》教你如何避免“妄作劳”
《黄帝内经》教你如何科学养生
《黄帝内经》教你如何科学养生:不妄作劳
冬季取暖神器:小松鼠壁挂炉调试全攻略
家用燃气壁挂炉安装与调试全攻略
太原:三晋大地的历史印记
城市生活必备:隔离霜真的能保护皮肤吗?
去丽江旅拍游玩攻略:景点、路线、费用全解析
猎心人老王教你读懂女人心
解码女生的暗恋密码:从眼神到微笑的15个心动信号
為什麼會哭到心臟痛?
从三国古战场到夜游新地标:合肥逍遥津公园的华丽转身
安徽博物院&包公祠:合肥三日游打卡圣地
冬日打卡:合肥三河古镇&巢湖美景
3D打印技术:重塑珠宝设计的未来璀璨