大脑如何排序?最新研究揭示工作记忆的"子空间"机制
大脑如何排序?最新研究揭示工作记忆的"子空间"机制
当我们记忆和思考时,大脑究竟在干什么?一项最新研究揭示了大脑工作记忆的奥秘。中国科学院脑智卓越中心王立平团队通过猕猴实验,发现大脑在处理排序任务时,会将次序信息记录在不同的"子空间"中,并通过临时子空间进行交换排序。这一发现不仅加深了我们对大脑工作记忆的理解,也为研究更复杂的认知现象提供了新的视角。
在生活中,我们一直在对各种各样的信息进行记忆、排序以及灵活地调用,比如打牌时思考出牌顺序、出行时规划路线、安排工作内容的先后等。排序是如此的频繁和自然,以至于人们常常意识不到这些任务有多复杂。如果用计算机去实现这种排序任务,就需要通过硬件和算法的配合,对信息进行编码、储存、计算比较和调用等一系列繁琐的步骤。那么大脑是如何完成这项功能的呢?
研究者们记录猕猴在处理排序任务时的神经活动,发现次序信息被记录在单独的“子空间”中,并通过临时子空间进行交换排序。图片来源:《科学》杂志
近日,一项发表在《科学》(Science)杂志上的研究,通过对猕猴进行心理排序任务时神经元活动的记录和分析,揭示了大脑的工作记忆模式。该研究题为《猕猴额叶皮层对空间序列信息的工作记忆编程》,由来自中国科学院脑科学与智能技术卓越创新中心(以下简称“脑智卓越中心”)的王立平团队完成。
在该研究中,两只猕猴被训练执行一个延迟序列排序任务。它们需要记忆屏幕中出现在不同序列位置的圆点图案,随后会在系统提示下对序列进行正向或逆向的排序,最后通过触摸屏幕来汇报结果。研究者们将微驱动电极阵列植入猕猴的前额叶皮层,记录了数千个神经元的电活动,并对结果进行数学描述,分析其中表现出来的模式。
该研究发现,在排序任务中,每一种次序的信息都被记录在一个对应的、反映神经元不同全局状态的“子空间”中。当面对需要调换顺序的认知任务时,子空间中的顺序信息会进行交换,方式是通过形成临时子空间来存储和转移信息。此外,当猕猴被要求以顺序或倒序的不同规则来调用次序信息时,存在一个存储规则的子空间来控制信息的流向。
猕猴记住点的位置次序,并按提示正序或者逆序汇报。图片来源:《科学》杂志
研究使用的猕猴经过了长期的训练,使它们能够将注意力集中在任务上,并能够理解图片指令的含义。田拯赫表示,记忆排序甚至理解符号为很多动物所掌握,并非人类独有的“高级”活动。从这个意义上说,猕猴实验能够成为探索人类大脑规律的重要参考。
测量了猕猴在排序任务中的神经元活动之后,下一步便是对这些数据进行分析,看看大脑在这个过程中到底在“干什么”。在面对记忆和排序任务时,猕猴大脑中的神经元同时活动,而每个神经元的放电强度有高有低,形成了大脑的不同状态。王立平说,这就像一个交响乐团一样,虽然在演奏一首曲目,但其中不同成员在演奏的旋律、节奏和强弱不尽相同。通过将成员个体归为一类,比如“弦乐组”、“管乐组”,就能“以管窥豹”,探索整个曲目的模式。
研究者首先要在任务刺激和神经元状态之间建立联系。“可以理解成建立单个神经元状态(因变量y)与次序信息(自变量x)之间的关系方程,其中神经元状态随着猕猴面对的次序信息的不同而变化。我们测量了4000多个神经元,就有4000多个这样的方程。”田拯赫介绍道,本科学习凝聚态物理的他具备很强的数学思维。“每一组方程的解代表着某一个神经元对各个次序和位置信息的响应大小,那么4000组解拼在一起就是所有神经元对这些位置的群体响应。”他说,“我们再去找这些群体响应的最显著的方向,或者叫模式。”
从向量的角度来看,特定时刻这些神经元的整体状态是一个4000多维空间中的一点。面对不同的任务以及在不同的时间,代表这些状态的点就在这个高维空间中形成了一个几何结构。通过主成分分析(PCA)等数学手段,研究团队就能够从中识别出具备总体特征且能反映特定任务信息的“子空间”。
田拯赫解释道,从数学上来说,子空间代表着那4000多个方程中有哪些在面对特定任务时更加显著。对应到大脑层面,子空间代表所有这些神经元的某种特定组合,其中每个神经元都发挥了一定作用。由于子空间反映了特定的模式,因此可以理解为这些空间上“记载”了大脑所存储的信息。研究团队发现,屏幕上多个圆点位置的信息储存在不同子空间中,当猕猴不需要对圆点进行排序时,这些信息随时间保持稳定。
而当猕猴看到苹果图片从而需要重排顺序时,每个原先的子空间会额外招募一个临时的新子空间,先把原先内部的记忆信息传递到其中,等自身信息被清空之后,再将临时子空间中的记忆信号传递给要交换的空间。“就像交换杯子里的水一样。平时我们交换两个杯子里的水,拿一个新杯子就好。而对于大脑来说,它会拿出两个新杯子用来交换。”田拯赫说。
该研究还发现有一个子空间并不记录具体的次序信息,而是与正序或者倒序的规则有关。在不同规则下,这个子空间的状态会随时间呈现不同的发展轨迹。研究团队推测这个子空间控制了次序子空间与临时子空间之间的信息流动,可以发起和门控交换过程。田拯赫解释,如果沿用交换杯中水的比喻,那么这个子空间就像端着水的服务员,在他左边的客人需要交换杯中水,而在他右边的则不需要。当左边的客人招呼他时,他就会朝那边走去,并拿出两个新杯子。右边的客人招呼时,他则会直接把两杯水端过去。“当然,这里的水、杯子、服务员以及交换动作,都是大脑的不同状态,如同一张脸的不同侧面。”田拯赫说。
随着技术手段的提高,科学家们能够获得的生物数据越来越多,也越来越底层。要对大脑这样的复杂生物系统进行表征和分析,除了具备生物学知识之外,与数学、计算机、物理、化学等学科广泛合作的重要性日益突显。王立平提到,他的研究团队招收的博士生中有很多都是来自其它专业,大家通过不同角度的思想碰撞带来了很多新的研究思路。“在很多领域导师不一定比学生懂得多,要相互学习交流。”他说。
作为该研究的第一作者,田拯赫认为研究组里相互合作、开放讨论的氛围对开展突破性研究非常关键,“可以自由地表达和尝试自己的想法非常重要。”
本文原文来自澎湃新闻