问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

计量经济学中的工具变量法(IV)详解

创作时间:
作者:
@小白创作中心

计量经济学中的工具变量法(IV)详解

引用
CSDN
1.
https://blog.csdn.net/weixin_48255522/article/details/144307597

工具变量法(Instrumental Variables, IV)是计量经济学中处理内生性问题的重要方法。本文系统地介绍了IV方法的原理、应用及其相关检验,包括内生性的来源与后果、工具变量的条件、两阶段最小二乘法(2SLS)、内生性检验、弱工具变量问题以及过度识别检验。

1. 内生性(Endogeneity)

定义:指一个模型中的变量不是随机分配的,受到模型中其他变量的影响。

解释变量与误差项相关:
[Cov(X_r, u) \neq 0]
其中,(X_r)为内生自变量。

来源:

  1. 模型误设:函数形式错误、无关变量的包含或遗漏变量。
  2. 测量误差:变量值未被真实记录,如家庭收入。
  3. 联立性/双向因果:两个变量之间存在相互影响的关系。
  4. 样本选择性:样本选择过程受到被解释变量的影响。

后果:OLS估计不一致。

2. 工具变量法

定义:若(X_k)为内生的解释变量,可将其分解为与误差项(u)相关和不相关的两部分。若能找到一个或多个变量(Z),满足以下条件:

  1. 工具外生性:(Z)与(u)不相关,即(Cov(Z, u) = 0)。
  2. 工具相关性:(Z)与(X_k)相关,即(Cov(Z, X_k) \neq 0)。

则可通过(Z)将(X_k)中与(u)无关的部分分离出来,从而识别出(X_k)对(y)的边际影响。

估计量
[
\hat{\beta_1} = \frac{\sum_{i=1}^{n}(z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^{n}(z_i - \bar{z})(x_i - \bar{x})}
]
[
\hat{\beta_0} = \bar{y} - \hat{\beta_1} \cdot \bar{x}
]

3. IV估计

考虑标准线性模型:
[y_1 = \beta_0 + \beta_1 \times y_2 + \beta_2 \times z_1 + u_1]

其中,(z_1)是外生的,与(u_1)不相关;(y_2)可能与(u_1)相关。工具变量(z_k)需要满足:

  1. 在结构方程中不出现;
  2. 与误差项不相关;
  3. 与内生解释变量部分相关。

4. 两阶段最小二乘法(2SLS)

工作原理:2SLS首先构造出与内生解释变量(x_k)相关度最强的工具变量的线性组合(\hat{x}),然后再用(y)对(\hat{x})做回归,从而得到一致性的估计。

步骤

  1. 第一阶段:用OLS法进行(X)关于工具变量(Z)的回归,并记录(X)的拟合值。
  2. 第二阶段:以得到的(X)的拟合值代替(X)作为解释变量,进行OLS回归。

5. 内生性检验

方法:豪斯曼检验(Durbin-Wu-Hausman Test,DWH)

原假设:所有解释变量均为外生变量。

6. 弱工具变量问题

如果工具变量与内生变量的相关性很弱,会导致:

  1. 估计量的标准误可能很大。
  2. 即使(z)与(u)只是适度相关,IV估计量也可能有较大偏误。
  3. IV的(R^2)可能为负。

检验方法:在第一阶段回归中,检验所有方程外的工具变量的系数是否联合为零。若检验的F统计量大于10,则拒绝“存在弱工具变量”的原假设。

7. 过度识别检验

定义

  • 不可识别:工具变量个数小于内生解释变量个数。
  • 恰好识别:工具变量个数等于内生解释变量个数。
  • 过度识别:工具变量个数大于内生解释变量个数。

检验方法

  1. 用2SLS法估计结构方程,获得2SLS残差(\hat{u_1})。
  2. 将(\hat{u_1})对所有外生变量回归,获得(R^2),记为(R_1^2)。
  3. 在所有IV都与(u_1)不相关的原假设下,(nR_1^2 \sim \chi^2_q),其中(q)是模型之外的工具变量数目减去内生解释变量的总数目。如果(nR^2)超过了临界值,拒绝原假设,推断出至少部分IV不是外生的。
© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号