升幂引理(Hensel's Lemma)详解:定义、应用及代码实现
创作时间:
作者:
@小白创作中心
升幂引理(Hensel's Lemma)详解:定义、应用及代码实现
引用
CSDN
1.
https://m.blog.csdn.net/tang7mj/article/details/139014836
升幂引理(Hensel's Lemma)是数论中的一个重要工具,尤其在模数为质数幂的情况下,用于求解多项式方程和同余方程的高次幂解。它广泛应用于算法竞赛(如ACM-ICPC)、计算机科学以及数论中的许多问题。本文将详细介绍升幂引理的定义、应用以及代码实现。
升幂引理的定义
升幂引理提供了一种从模 𝑝p 的解提升到模 𝑝𝑘pk 的解的方法。具体来说,假设 𝑓(𝑥)f(x) 是一个多项式,𝑝p 是一个质数,且我们已知 𝑓(𝑥)≡0(mod𝑝)f(x)≡0(modp) 的某个解 𝑥0x0 ,升幂引理可以用于找到模 𝑝𝑘pk 的解。
升幂引理的基本形式
设 𝑝p 为一个质数,𝑘k 为正整数。如果 𝑥0x0 是方程 𝑓(𝑥)≡0(mod𝑝𝑘)f(x)≡0(modpk) 的解,且 𝑓′(𝑥0)≢0(mod𝑝)f′(x0 )≡0(modp),那么存在唯一的 𝑥1x1 满足:
𝑥1≡𝑥0(mod𝑝𝑘)x1 ≡x0 (modpk) 𝑓(𝑥1)≡0(mod𝑝𝑘+1)f(x1 )≡0(modpk+1)
升幂引理的应用
升幂引理主要用于解决以下问题:
- 求解高次同余方程:通过已知模 𝑝p 的解,逐步提升到模 𝑝𝑘pk 的解。
- 数论中的多项式方程:在模数为质数幂的情况下,求解多项式方程。
具体求解步骤
- 初始解的确定:找到 𝑓(𝑥)≡0(mod𝑝)f(x)≡0(modp) 的解 𝑥0x0 。
- 计算导数:计算 𝑓′(𝑥0)f′(x0 ) 并确认 𝑓′(𝑥0)≢0(mod𝑝)f′(x0 )≡0(modp)。
- 升幂过程:
- 计算 𝑓(𝑥0)f(x0 ) 和 𝑓′(𝑥0)f′(x0 ) 的模 𝑝𝑘pk 值。
- 根据公式计算新的解 𝑥1x1 ,使得 𝑥1≡𝑥0(mod𝑝𝑘)x1 ≡x0 (modpk)。
实现代码
C++ 实现
#include <iostream>
using namespace std;
// 扩展欧几里得算法求逆元
int ex_gcd(int a, int b, int& x, int& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int d = ex_gcd(b, a % b, x, y);
int temp = x;
x = y;
y = temp - a / b * y;
return d;
}
// 模逆元求解
int mod_inverse(int a, int p) {
int x, y;
int g = ex_gcd(a, p, x, y);
if (g != 1) {
throw "No modular inverse!";
}
return (x % p + p) % p;
}
// 升幂引理
int hensel_lifting(int f(int), int fp(int), int x0, int p, int k) {
int x = x0;
for (int i = 1; i <= k; ++i) {
int r = f(x) / (p * i);
int fp_inv = mod_inverse(fp(x), p);
x = (x - r * fp_inv % p * p) % (p * i);
}
return x;
}
// 示例函数
int f(int x) {
return x * x - 2;
}
int fp(int x) {
return 2 * x;
}
int main() {
int p = 5; // 质数
int k = 2; // 升幂次数
int x0 = 3; // 模 p 的解
try {
int result = hensel_lifting(f, fp, x0, p, k);
cout << "The solution is: " << result << endl;
} catch (const char* msg) {
cerr << msg << endl;
}
return 0;
}
实例讲解
例题
假设我们要求解方程 𝑥2−2≡0(mod25)x2−2≡0(mod25),已知 𝑥0=3x0 =3 是方程在模 5 下的解。
解法
- 确定初始解 𝑥0=3x0 =3。
- 计算导数 𝑓′(𝑥)=2𝑥f′(x)=2x,确认 𝑓′(𝑥0)=6≢0(mod5)f′(x0 )=6≡0(mod5)。
- 使用升幂引理提升解:
- 初始解为 𝑥0=3x0 =3。
- 计算 𝑥1x1 使得 𝑥1≡3(mod5)x1 ≡3(mod5) 且 𝑥12−2≡0(mod25)x12 −2≡0(mod25)。
- 经过升幂过程得到最终解 𝑥1=8x1 =8。
应用
升幂引理在许多实际问题中都有应用,例如:
- 数论研究:用于求解模数为质数幂的多项式方程。
- 算法竞赛:解决复杂的同余方程问题。
- 计算机科学:密码学中的高次同余方程求解。
总结
本节介绍了升幂引理的基本定义、应用步骤、实例讲解以及代码实现。掌握这些内容,对于理解数论中的许多问题和算法竞赛中的高效解题具有重要意义。通过代码示例,读者可以更好地理解和应用升幂引理解决实际问题。
热门推荐
1901年诺贝尔物理学奖——X射线的发现
书评丨货币信用的逻辑
糖尿病神经病变,到底伤了哪根神经?
哪些人适合吃紫苏?附5个实用食谱
全球供应链重构,中国物流企业如何破局?
怎样和不同能力的孩子玩挠痒痒游戏?
探秘黄花菜:从野生到餐桌的营养传奇
“强制终止程序的方法详解”
Excel图表动态化设置完全指南
长不长寿,身体的毛发早就暗示你!这3处爱长毛,长寿更有希望!
揭秘骨骼生长的神奇密码——骨龄
魏忠贤对明朝的影响到底有多大?为何说“魏忠贤不死,明朝不会亡”?
《柳叶刀》重磅综述:肺结节恶变几率有多大?发现肺结节应该怎么办?
领导突然塞给你超额工作?资深HR教你5个不伤和气的拒绝话术
怎样判断实火还是虚火
教育部新出台"101计划"是什么?和985、211有何区别?一文看懂
CFPS数据库如何匹配
输电线路故障在线监测装置:智能电网的智慧防线
话务员应具备的能力
西柏坡红色教育:沉浸式体验铸就初心 实践课堂传承红色基因
怎样把好兵员思想关?广州创新谈心机制,巧解思想“疙瘩”
推动露营旅游休闲实现健康有序发展
从预防到康复,肺炎护理怎么做
内蒙古工业大学:一所综合性工科强校的发展历程与现状
预收账款管理策略:优化预收账款流程,提升企业现金流效益
汽车加装尾翼是否需要备案?尾翼的加装对车辆性能有什么影响?
汽车AC能制热吗?冬季为什么要按下它?车主:后悔现在才知道……
美人梅的果实可以吃吗?
俄罗斯餐桌礼仪详解:掌握细节,融入文化
国漫制作的风格特点:传统与现代的完美融合