升幂引理(Hensel's Lemma)详解:定义、应用及代码实现
创作时间:
作者:
@小白创作中心
升幂引理(Hensel's Lemma)详解:定义、应用及代码实现
引用
CSDN
1.
https://m.blog.csdn.net/tang7mj/article/details/139014836
升幂引理(Hensel's Lemma)是数论中的一个重要工具,尤其在模数为质数幂的情况下,用于求解多项式方程和同余方程的高次幂解。它广泛应用于算法竞赛(如ACM-ICPC)、计算机科学以及数论中的许多问题。本文将详细介绍升幂引理的定义、应用以及代码实现。
升幂引理的定义
升幂引理提供了一种从模 𝑝p 的解提升到模 𝑝𝑘pk 的解的方法。具体来说,假设 𝑓(𝑥)f(x) 是一个多项式,𝑝p 是一个质数,且我们已知 𝑓(𝑥)≡0(mod𝑝)f(x)≡0(modp) 的某个解 𝑥0x0 ,升幂引理可以用于找到模 𝑝𝑘pk 的解。
升幂引理的基本形式
设 𝑝p 为一个质数,𝑘k 为正整数。如果 𝑥0x0 是方程 𝑓(𝑥)≡0(mod𝑝𝑘)f(x)≡0(modpk) 的解,且 𝑓′(𝑥0)≢0(mod𝑝)f′(x0 )≡0(modp),那么存在唯一的 𝑥1x1 满足:
𝑥1≡𝑥0(mod𝑝𝑘)x1 ≡x0 (modpk) 𝑓(𝑥1)≡0(mod𝑝𝑘+1)f(x1 )≡0(modpk+1)
升幂引理的应用
升幂引理主要用于解决以下问题:
- 求解高次同余方程:通过已知模 𝑝p 的解,逐步提升到模 𝑝𝑘pk 的解。
- 数论中的多项式方程:在模数为质数幂的情况下,求解多项式方程。
具体求解步骤
- 初始解的确定:找到 𝑓(𝑥)≡0(mod𝑝)f(x)≡0(modp) 的解 𝑥0x0 。
- 计算导数:计算 𝑓′(𝑥0)f′(x0 ) 并确认 𝑓′(𝑥0)≢0(mod𝑝)f′(x0 )≡0(modp)。
- 升幂过程:
- 计算 𝑓(𝑥0)f(x0 ) 和 𝑓′(𝑥0)f′(x0 ) 的模 𝑝𝑘pk 值。
- 根据公式计算新的解 𝑥1x1 ,使得 𝑥1≡𝑥0(mod𝑝𝑘)x1 ≡x0 (modpk)。
实现代码
C++ 实现
#include <iostream>
using namespace std;
// 扩展欧几里得算法求逆元
int ex_gcd(int a, int b, int& x, int& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int d = ex_gcd(b, a % b, x, y);
int temp = x;
x = y;
y = temp - a / b * y;
return d;
}
// 模逆元求解
int mod_inverse(int a, int p) {
int x, y;
int g = ex_gcd(a, p, x, y);
if (g != 1) {
throw "No modular inverse!";
}
return (x % p + p) % p;
}
// 升幂引理
int hensel_lifting(int f(int), int fp(int), int x0, int p, int k) {
int x = x0;
for (int i = 1; i <= k; ++i) {
int r = f(x) / (p * i);
int fp_inv = mod_inverse(fp(x), p);
x = (x - r * fp_inv % p * p) % (p * i);
}
return x;
}
// 示例函数
int f(int x) {
return x * x - 2;
}
int fp(int x) {
return 2 * x;
}
int main() {
int p = 5; // 质数
int k = 2; // 升幂次数
int x0 = 3; // 模 p 的解
try {
int result = hensel_lifting(f, fp, x0, p, k);
cout << "The solution is: " << result << endl;
} catch (const char* msg) {
cerr << msg << endl;
}
return 0;
}
实例讲解
例题
假设我们要求解方程 𝑥2−2≡0(mod25)x2−2≡0(mod25),已知 𝑥0=3x0 =3 是方程在模 5 下的解。
解法
- 确定初始解 𝑥0=3x0 =3。
- 计算导数 𝑓′(𝑥)=2𝑥f′(x)=2x,确认 𝑓′(𝑥0)=6≢0(mod5)f′(x0 )=6≡0(mod5)。
- 使用升幂引理提升解:
- 初始解为 𝑥0=3x0 =3。
- 计算 𝑥1x1 使得 𝑥1≡3(mod5)x1 ≡3(mod5) 且 𝑥12−2≡0(mod25)x12 −2≡0(mod25)。
- 经过升幂过程得到最终解 𝑥1=8x1 =8。
应用
升幂引理在许多实际问题中都有应用,例如:
- 数论研究:用于求解模数为质数幂的多项式方程。
- 算法竞赛:解决复杂的同余方程问题。
- 计算机科学:密码学中的高次同余方程求解。
总结
本节介绍了升幂引理的基本定义、应用步骤、实例讲解以及代码实现。掌握这些内容,对于理解数论中的许多问题和算法竞赛中的高效解题具有重要意义。通过代码示例,读者可以更好地理解和应用升幂引理解决实际问题。
热门推荐
5项快递业国家标准今日起实施
揭秘法院官网查询技巧:快速获取法律信息的方法
乒乓球横板球拍的正确握法,发球时如何发挥手腕的灵活性
鸦片走私在清朝后期的泛滥原因,以及清政府对禁烟运动的措施
99A式坦克重启生产,陆军装备发展面临哪些挑战?
慢阻肺的主要症状有哪些
慢阻肺和支气管哮喘怎样鉴别
如何看炒作逻辑:股票炒作逻辑
为什么婚姻不幸的人选择背叛而不是离婚?婚姻心理学告诉你答案!
战术分析,进击的巨人——立体机动装置的策略运用与战术影响
小孩吃了能“益智”?这款中药糖浆,正遭遇全网质疑
如何对车辆进行全面的检验?这种检验对车辆安全性有何重要意义?
紫微斗数命主星怎么看,官禄宫看个人事业格局
「传单」来袭,儿童和青少年如何防范 EBV 病毒感染?
掰开吃药半小时后昏迷!一文说清为什么有些药不能掰吃
打印预览在哪里?5种方法帮你轻松找到
宝马X3发动机警示灯亮的可能原因解析
崩铁本地化多成功?玩家整理2.7版本冷笑话,不同语言笑点都密集
生活中的幽默与讽刺:从日常小事到人生哲学
汽车蓄电池怎么选择?揭秘蓄电池的选购技巧与保养之道
二战时期,为什么美军要在头盔上加一层渔网?这做法至少拯救了20万美军
锆石和钻石的区别,全面讲述锆石与钻石之间的不同
常见的宠物食品原料有哪些?
大医天下文化寻根探源走进药王祖庭
缓解颈部疼痛,轻松告别不适
古代黥刑的刑法适用及其历史意义
晚期肺癌药物多 不必纠结抗药性
高铁票改签过一次还可以改签吗?一次为限,改签需谨慎!
总结长命百岁的健康习惯,这四件事可延年益寿
从《哪吒之魔童闹海》看中国动漫的叙事手法与情感共鸣