升幂引理(Hensel's Lemma)详解:定义、应用及代码实现
创作时间:
作者:
@小白创作中心
升幂引理(Hensel's Lemma)详解:定义、应用及代码实现
引用
CSDN
1.
https://m.blog.csdn.net/tang7mj/article/details/139014836
升幂引理(Hensel's Lemma)是数论中的一个重要工具,尤其在模数为质数幂的情况下,用于求解多项式方程和同余方程的高次幂解。它广泛应用于算法竞赛(如ACM-ICPC)、计算机科学以及数论中的许多问题。本文将详细介绍升幂引理的定义、应用以及代码实现。
升幂引理的定义
升幂引理提供了一种从模 𝑝p 的解提升到模 𝑝𝑘pk 的解的方法。具体来说,假设 𝑓(𝑥)f(x) 是一个多项式,𝑝p 是一个质数,且我们已知 𝑓(𝑥)≡0(mod𝑝)f(x)≡0(modp) 的某个解 𝑥0x0 ,升幂引理可以用于找到模 𝑝𝑘pk 的解。
升幂引理的基本形式
设 𝑝p 为一个质数,𝑘k 为正整数。如果 𝑥0x0 是方程 𝑓(𝑥)≡0(mod𝑝𝑘)f(x)≡0(modpk) 的解,且 𝑓′(𝑥0)≢0(mod𝑝)f′(x0 )≡0(modp),那么存在唯一的 𝑥1x1 满足:
𝑥1≡𝑥0(mod𝑝𝑘)x1 ≡x0 (modpk) 𝑓(𝑥1)≡0(mod𝑝𝑘+1)f(x1 )≡0(modpk+1)
升幂引理的应用
升幂引理主要用于解决以下问题:
- 求解高次同余方程:通过已知模 𝑝p 的解,逐步提升到模 𝑝𝑘pk 的解。
- 数论中的多项式方程:在模数为质数幂的情况下,求解多项式方程。
具体求解步骤
- 初始解的确定:找到 𝑓(𝑥)≡0(mod𝑝)f(x)≡0(modp) 的解 𝑥0x0 。
- 计算导数:计算 𝑓′(𝑥0)f′(x0 ) 并确认 𝑓′(𝑥0)≢0(mod𝑝)f′(x0 )≡0(modp)。
- 升幂过程:
- 计算 𝑓(𝑥0)f(x0 ) 和 𝑓′(𝑥0)f′(x0 ) 的模 𝑝𝑘pk 值。
- 根据公式计算新的解 𝑥1x1 ,使得 𝑥1≡𝑥0(mod𝑝𝑘)x1 ≡x0 (modpk)。
实现代码
C++ 实现
#include <iostream>
using namespace std;
// 扩展欧几里得算法求逆元
int ex_gcd(int a, int b, int& x, int& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int d = ex_gcd(b, a % b, x, y);
int temp = x;
x = y;
y = temp - a / b * y;
return d;
}
// 模逆元求解
int mod_inverse(int a, int p) {
int x, y;
int g = ex_gcd(a, p, x, y);
if (g != 1) {
throw "No modular inverse!";
}
return (x % p + p) % p;
}
// 升幂引理
int hensel_lifting(int f(int), int fp(int), int x0, int p, int k) {
int x = x0;
for (int i = 1; i <= k; ++i) {
int r = f(x) / (p * i);
int fp_inv = mod_inverse(fp(x), p);
x = (x - r * fp_inv % p * p) % (p * i);
}
return x;
}
// 示例函数
int f(int x) {
return x * x - 2;
}
int fp(int x) {
return 2 * x;
}
int main() {
int p = 5; // 质数
int k = 2; // 升幂次数
int x0 = 3; // 模 p 的解
try {
int result = hensel_lifting(f, fp, x0, p, k);
cout << "The solution is: " << result << endl;
} catch (const char* msg) {
cerr << msg << endl;
}
return 0;
}
实例讲解
例题
假设我们要求解方程 𝑥2−2≡0(mod25)x2−2≡0(mod25),已知 𝑥0=3x0 =3 是方程在模 5 下的解。
解法
- 确定初始解 𝑥0=3x0 =3。
- 计算导数 𝑓′(𝑥)=2𝑥f′(x)=2x,确认 𝑓′(𝑥0)=6≢0(mod5)f′(x0 )=6≡0(mod5)。
- 使用升幂引理提升解:
- 初始解为 𝑥0=3x0 =3。
- 计算 𝑥1x1 使得 𝑥1≡3(mod5)x1 ≡3(mod5) 且 𝑥12−2≡0(mod25)x12 −2≡0(mod25)。
- 经过升幂过程得到最终解 𝑥1=8x1 =8。
应用
升幂引理在许多实际问题中都有应用,例如:
- 数论研究:用于求解模数为质数幂的多项式方程。
- 算法竞赛:解决复杂的同余方程问题。
- 计算机科学:密码学中的高次同余方程求解。
总结
本节介绍了升幂引理的基本定义、应用步骤、实例讲解以及代码实现。掌握这些内容,对于理解数论中的许多问题和算法竞赛中的高效解题具有重要意义。通过代码示例,读者可以更好地理解和应用升幂引理解决实际问题。
热门推荐
成渝双城齐心同力 推动行业协会商会助力产业园区发展
敏感红血丝的成因与改善方法
低渗性脱水的治疗方法有哪些?
红油菜苔怎么做好吃
《人类政治发展史-019》苏美尔城邦时期(上)
风铃草是什么草?它的特点和用途有哪些?
草坪草品种知识大全!
公积金提前还款:缩期还是缩额?
虚拟机如何安装汉化包
哪些货物信息是货运代理在空运费报价前,想要先了解的?
中国古典舞的历史发展与旋转技巧
日本留学咨询|日本将迎来高中教育学费全免!去日本读高中都有哪些优势?
GSMA发布各国5G排名,中国已部署超150万基站成果显著
如何烹饪干豆
眼耳鼻喉科2025年健康教育推广计划
如何掌握背诵的方法和技巧?这些方法和技巧如何提高记忆效果?
想成事,先研究自己!分享自我认知的7大有效方法~
无溯源码燕窝如何看好坏
基于大数据的病种分值付费体系研究
月季花扦插全攻略:最佳时间、方法与养护要点详解
PMI项目管理认证全解析:从PMP到PMI-SP
张家界天门山最美最值得游玩的必去景点排名
产品经理如何制定有效的市场定位策略
如何顺利转移居民基本医保?该医保转移有哪些要求?
如何在医保转移过程中保障自身权益?这种权益保障存在哪些挑战?
玩转短视频:如何快速涨粉与获得粉丝
青少年心理疏导:15岁女生网恋家长应该如何开导
新迈腾的提速性能受哪些因素影响?如何优化提速效果?
这 4 种走路姿势,让你关节变形、身体歪斜!
如何根据企业需求设计绩效评价系统?