问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

考研数学复习之定积分定义求解数列极限(超详细教程)

创作时间:
作者:
@小白创作中心

考研数学复习之定积分定义求解数列极限(超详细教程)

引用
CSDN
1.
https://blog.csdn.net/weixin_73953650/article/details/146176732

定积分定义求解数列极限是一种将数列极限问题转化为定积分问题进行求解的方法。这种方法通常适用于那些和式数列极限,其主要思路是将数列的项看作是某个函数在某一点或某一段区间上的取值或某种形式的和,然后利用定积分的性质和计算方法,来求解这类数列的极限。

定积分定义

设函数
在区间
上有界,在
中任意插入若干个分点
把区间
分成n个小区间
那么各个小区间的长度为 :
接着,在每个小区间
上任取一点
,作函数值
与小区间长度
的乘积
(i=1,2,…·,n),并作出和式

,如果不论对区间
怎样划分,也不论在小区间
上点
怎样选取,只要当
时,和式
总趋于确定的极限
,那么称这个极限
为函数
在区间
上的定积分,记作:

数列极限与定积分定义的转换

对于定积分的定义,我们可以通过将区间进行特殊划分,进而把数列极限转化为定积分来计算。例如,将区间
进行等分,即
那么任意一个切分点
,
为**等差数列,首项为a,末项为b,公差d=
**,根据前边定积分的定义,我们需要任取一点
,这里不妨令他为
,那么我们便有:
(1)
这样就把数列极限的计算转化为求一个函数在指定区间上的定积分了。

注意:
(2)

时(1)(2)两式是等价的,实际上(1)式完全可以看做(2)式m=0的情况,这里我建议大家重点记忆(2)式。

原因:

定积分定义的一些变型式

特别地,对于(1)式来说,还有一些常见的变型式:
,
(3)
(3)式是最一般和通用的式子,我们务必要牢记。
当我们将(3)式中f内部以及外部的k去掉后便有:
(4)
(4)式的证明很简单,其实就是整体代换的思路,此时我们将k(b-a)看做整体:
当k=1,a=0,b=1时,我们便得到了利用定积分定义求解数列极限中的‘常客’:

转换方法

  1. 整理和式数列为
    的形式

  2. 内部对数列通项整理(一般是同除或同乘n,
    ,...
    ,
    )。
  3. 将所有含
    的项看做x,
    外嵌套数列通项公式看做函数法则,那么便得到了(3)式。
  4. 实际转换时我们只需要按照
    为核心去化简整理即可。

例.
解:原式=
原式=
** 求和是针对i的,
在求和符号内相当于常数**
原式=
到这儿,我们便将这个数列极限整理成了非常完美的形式,并且还能一眼看出积分下限为0
被积函数为
,接下来就是判断上限了……

公式法判定上下限

根据符合定积分定义的和式数列的通项判定积分上下限是一项必备技能,倘若你遇到类似题目,发现可以使用定积分定义来做,但是却迟迟找不出积分上下限,那么这就太可惜了。
以下是我自己总结的一个方法:

判定方法

  1. 定位到数列通项中含
    的一坨式子,如(3)式中的
    ,这里我们设它为
    ,积分上下限分别为a,b,若g(n,i)中具有常数项,那么常数项为积分下限a,否则就是0。
  2. 令g(n,i)中的i分别为求和符号的上下限,一般而言是1和kn,那么a=
    ,b=
    ,由此便确定了积分的上下限。
  3. 求和符号外含
    的式子我们称他为步长,那么既然已经有了积分上下限,那么这个步长也就呼之欲出了,步长显然就是

例.
注意到g(n,i)为
,求和符号上下限分别为
1与2n
令i=1,
=0;
令i=2n,
=2;
那么显而易见,该极限对应的定积分上下限分别为0,2步长为


原极限=

例题

例子是最好的学习工具,丰富的例子远比枯燥的定义和公式更加让人有学习动力。
接下来,我们从易到难做几道例题,来巩固一下前边的知识点。

(判别方法)
例1.(2021数二)设函数f(x)在[0,1]上连续,则

A.
B.
C.
D.
:本题使用我们刚刚讲解过的判别方法便可秒杀
正确选项为B,但这里需要注意的是,对于B项
我们还可以将其写作:
**
**
** 也就是先前我们谈到的(2)式,这里的常数
并不会影响整个积分结果,于是我们可以将其忽略**
** 那么剩下的便是
**
** 这是最经典的
的定义。**

(定积分定义直接计算)
例2.(2016数三)极限
解:原式=
根据判别方法,积分上下限为0,1
那么原式=

(定积分定义+放缩)
例3.极限
'1'我们可以看做
原式=
原式=
原式=
注意到
原式=
原式=
为了保证步长存在,我们利用
来添加步长项
求和是针对
的,
视为常数放在求和符号外侧
另一个
放在求和符号内部即可
原式=
原式=
设L=
对L内部
进行放缩
显然
那么
由于公式较长,手机端阅读时会变形,因此这里使用图片来代替,请见谅.....

(指数变形)
例4.
原式=
原式=
根据判别方法,对于
其等价于
对于该积分,我们使用分部积分不难得到其
结果为
那么原式极限结果为:

总结

以上便是使用定积分定义求解数列极限时所有的要点,看完这篇文章,我相信你又将掌握一个求极限的利器。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号