一图三例说明白贝叶斯公式
一图三例说明白贝叶斯公式
贝叶斯公式是统计学中的一个重要概念,它能够在有限的信息下帮助我们预测出概率。本文通过三个具体示例来说明贝叶斯公式的计算方法和应用场景,帮助读者更好地理解这一重要概念。
1.1 一张图解释贝叶斯公式
英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首次提出了这个定理。贝叶斯在他的文章中是为了解决一个“逆概率”的问题。贝叶斯公式能够在有限的信息下,帮助我们预测出概率。
条件概率表示在某种类别(事件)前提下,某事发生的概率。只要在题设条件中有:“已知事件A发生”或“在事件B发生的条件下”等,均要考虑条件概率,条件概率帮助我们考虑问题时限定在正确的可能性(条件)下。
先验概率表示每种类别分布的概率。
2.2 三个示例
示例1
大年三十晚上,爷爷奶奶发红包。爷爷准备的红包是4个50元的,6个100元的。奶奶准备的红包是8个50元的,4个100元的。全家人随机抽,你运气很好,拿到一个100元的红包。请问这个红包来自爷爷的概率有多少?来自奶奶的概率有多少?
解答:
- 爷爷一共10个红包,奶奶一共12个红包
- 分类(事件A)爷爷的概率是P(爷爷) = 10个红包/22个红包=5/11
- 分类(事件B)奶奶的概率是P(奶奶) = 12个红包/22个红包=6/11
- 分类(事件A)爷爷条件下(或者理解:范围下),抽中100元红包的概率是=6个红包/10个红包=3/5。这里分母10个红包指得是爷爷一共10个红包
- 分类(事件B)奶奶条件下(或者理解:范围下),抽中100元红包的概率是=4个红包/12个红包=2/6。这里分母12个红包指得是奶奶一共12个红包
- 注意:这里全概率P(100)是直接可以求的,不需要全概率公式:P(100)=10个100元红包/22个总红包=5/11【有些时候全概率需要使用全概率公式计算】
根据贝叶斯公式,其实就是求发生了一个事件(抽到了1个100元的红包)来自爷爷还是奶奶的概率
即通过先验概率(爷爷和奶奶分类的全概率)、条件概率(爷爷或奶奶类别或者范围下100元红包的条件概率)得出后验概率(他属于哪个类别(爷爷或奶奶)的概率是多少)
- P(爷爷 | 100) = P(100 | 爷爷) × P(爷爷)/ P(100) = (3/5) × (5/11) ÷ (5/11) = 3/5
- P(奶奶 | 100) = P(100 | 奶奶) × P(奶奶)/ P(100) = (2/6) × (6/11) ÷ (5/11) = 2/5
分析内容 分类(事件A)爷爷 分类(事件B)奶奶
- P(W) 先验概率 每种类别的概率 5/11 6/11
- 条件概率 在各分类中某事件的概率 3/5 2/6
- 全概率 某种程度上可以理解先分类再分步 5/11(全局均是这个值) 5/11(全局均是这个值)
- 后验概率,发生某事件条件下属于这个类别的概率 3/5 2/5
示例2
在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1。若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?
解答:
- 分类(事件A)男性的概率是P(男性) = 2/3
- 分类(事件B)女性的概率是P(女性) = 1/3
- 分类(事件A)男性条件下(或者理解:范围下)穿凉鞋的概率,即条件概率P(凉鞋 | 男性)=1/2
- 分类(事件B)女性条件下(或者理解:范围下)穿凉鞋的概率,即条件概率P(凉鞋 | 女性)=2/3
- 注意这里与示例1不一样的地方是,对于全概率是没办法直接求出的,因此利用全概率公式
- 全概率公式
- P(凉鞋) = P(男性) × P(凉鞋 | 男性) + P(女性) × P(凉鞋 | 女性) = 2/3 × 1/2 + 1/3 × 2/3= 5/9
- P( 男性 | 凉鞋) = P(凉鞋 | 男性) × P(男性)/ P(凉鞋) = (1/2) × (2/3) ÷ (5/9) = 3/5
- P( 女性 | 凉鞋) = P(凉鞋 | 女性) × P(女性)/ P(凉鞋) = (2/3) × (1/3) ÷ (5/9) = 2/5
分析内容 分类(事件A)男性 分类(事件B)女性
- P(W) 先验概率 每种类别的概率 2/3 1/3
- 条件概率 在各分类中某事件的概率 1/2 2/3
- 全概率 某种程度上可以理解先分类再分步 5/9(全局均是这个值) 5/9(全局均是这个值)
- 后验概率,发生某事件条件下属于这个类别的概率 3/5 2/5
示例3
某学校组织学生进行答题比赛,已知共有4道A类试题,8道B类试题,12道C类试题,学生从中任选1道该题作答,学生甲答对A,B,C这3类试题的概率分别是1/2,1/4,1/6,若甲答对所选试题,则这道题是B类试题的概率为【2023春 重庆-高二校联考期中】
解答:
- 分类(事件)总和为4+8+12=24
- 分类(事件A)A类试题的概率是P(A类试题) = 1/6
- 分类(事件B)B类试题的概率是P(B类试题) = 1/3
- 分类(事件C)C类试题的概率是P(C类试题) = 1/2
- 分类(事件A)答A类试题条件下(或者理解:范围下)答对所选试题的概率,即条件概率P(答对 | A类试题)=1/2
- 分类(事件B)答A类试题条件下(或者理解:范围下)答对所选试题的概率,即条件概率P(答对 | B类试题)=1/4
- 分类(事件C)答A类试题条件下(或者理解:范围下)答对所选试题的概率,即条件概率P(答对 | C类试题)=1/6
- 同样的,对于全概率是没办法直接求出的,因此利用全概率公式
- 全概率公式
- P(答对) = P(A类试题) × P(答对 | A类试题) + P(B类试题) × P(答对 | B类试题) + P(C类试题) × P(答对 | C类试题)= 1/4
- 直接使用贝叶斯公式
- 算“逆概率”即“答对所选试题,则这道题是B类试题的概率“
- P( B类试题 | 凉答对) = P(B类试题) × P(答对 | B类试题) / P(答对)= (1/3) × (1/4) ÷ (1/4) = 1/3
3.3 对贝叶斯公式另外一种理解
其实还有一种对贝叶斯公式的理解和解法,即分类用乘法法分步用加分的概念
3.13.1 分类
就是把分类(事件)看成分类,例如:
- 示例1中的爷爷和奶奶
- 示例2中的男性和女性
- 示例3中的各类试题
简单理解就是先验概率P(X)
3.23.2 分步
分步可以看成在限定条件下,即在分类范围下的事件发生概率,例如:
- 示例1中,在爷爷或者奶奶的总红包数量范围下,抽中100元红包的概率
- 示例2中,在男性或者女性限定条件下,穿凉鞋的概率
- 示例3中,在回答各类试卷的范围,答对的概率
这里的概率就是条件概率,条件概率的分母只是在所在分类或者范围下,这个分类的汇总总和
条件概率形式上使用P(W | X)或者P(答对 | B类试题)或者P( 男性 | 凉鞋) ,中间为竖线
3.33.3 全概率
此时再通过分类用乘法法分步用加分的概念,就是先用分步的思想得出各事件在全局(包含各分类的视觉下)算出全局的概率,就是联合概率
联合概率就是表示两个事件共同发生的概率
计算出同时满足各分类下各事件发生的概率后,再通过分类相加的思想,得出的就是该事件在全局的全概率