问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

一图三例说明白贝叶斯公式

创作时间:
作者:
@小白创作中心

一图三例说明白贝叶斯公式

引用
1
来源
1.
https://www.xzxkjd.com/mianyangredian/12311.html

贝叶斯公式是统计学中的一个重要概念,它能够在有限的信息下帮助我们预测出概率。本文通过三个具体示例来说明贝叶斯公式的计算方法和应用场景,帮助读者更好地理解这一重要概念。

1.1 一张图解释贝叶斯公式

英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首次提出了这个定理。贝叶斯在他的文章中是为了解决一个“逆概率”的问题。贝叶斯公式能够在有限的信息下,帮助我们预测出概率。

条件概率表示在某种类别(事件)前提下,某事发生的概率。只要在题设条件中有:“已知事件A发生”或“在事件B发生的条件下”等,均要考虑条件概率,条件概率帮助我们考虑问题时限定在正确的可能性(条件)下。

先验概率表示每种类别分布的概率。

2.2 三个示例

示例1

大年三十晚上,爷爷奶奶发红包。爷爷准备的红包是4个50元的,6个100元的。奶奶准备的红包是8个50元的,4个100元的。全家人随机抽,你运气很好,拿到一个100元的红包。请问这个红包来自爷爷的概率有多少?来自奶奶的概率有多少?

解答:

  • 爷爷一共10个红包,奶奶一共12个红包
  • 分类(事件A)爷爷的概率是P(爷爷) = 10个红包/22个红包=5/11
  • 分类(事件B)奶奶的概率是P(奶奶) = 12个红包/22个红包=6/11
  • 分类(事件A)爷爷条件下(或者理解:范围下),抽中100元红包的概率是=6个红包/10个红包=3/5。这里分母10个红包指得是爷爷一共10个红包
  • 分类(事件B)奶奶条件下(或者理解:范围下),抽中100元红包的概率是=4个红包/12个红包=2/6。这里分母12个红包指得是奶奶一共12个红包
  • 注意:这里全概率P(100)是直接可以求的,不需要全概率公式:P(100)=10个100元红包/22个总红包=5/11【有些时候全概率需要使用全概率公式计算】

根据贝叶斯公式,其实就是求发生了一个事件(抽到了1个100元的红包)来自爷爷还是奶奶的概率

即通过先验概率(爷爷和奶奶分类的全概率)、条件概率(爷爷或奶奶类别或者范围下100元红包的条件概率)得出后验概率(他属于哪个类别(爷爷或奶奶)的概率是多少)

  • P(爷爷 | 100) = P(100 | 爷爷) × P(爷爷)/ P(100) = (3/5) × (5/11) ÷ (5/11) = 3/5
  • P(奶奶 | 100) = P(100 | 奶奶) × P(奶奶)/ P(100) = (2/6) × (6/11) ÷ (5/11) = 2/5

分析内容 分类(事件A)爷爷 分类(事件B)奶奶

  • P(W) 先验概率 每种类别的概率 5/11 6/11
  • 条件概率 在各分类中某事件的概率 3/5 2/6
  • 全概率 某种程度上可以理解先分类再分步 5/11(全局均是这个值) 5/11(全局均是这个值)
  • 后验概率,发生某事件条件下属于这个类别的概率 3/5 2/5

示例2

在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1。若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

解答:

  • 分类(事件A)男性的概率是P(男性) = 2/3
  • 分类(事件B)女性的概率是P(女性) = 1/3
  • 分类(事件A)男性条件下(或者理解:范围下)穿凉鞋的概率,即条件概率P(凉鞋 | 男性)=1/2
  • 分类(事件B)女性条件下(或者理解:范围下)穿凉鞋的概率,即条件概率P(凉鞋 | 女性)=2/3
  • 注意这里与示例1不一样的地方是,对于全概率是没办法直接求出的,因此利用全概率公式
  • 全概率公式
  • P(凉鞋) = P(男性) × P(凉鞋 | 男性) + P(女性) × P(凉鞋 | 女性) = 2/3 × 1/2 + 1/3 × 2/3= 5/9
  • P( 男性 | 凉鞋) = P(凉鞋 | 男性) × P(男性)/ P(凉鞋) = (1/2) × (2/3) ÷ (5/9) = 3/5
  • P( 女性 | 凉鞋) = P(凉鞋 | 女性) × P(女性)/ P(凉鞋) = (2/3) × (1/3) ÷ (5/9) = 2/5

分析内容 分类(事件A)男性 分类(事件B)女性

  • P(W) 先验概率 每种类别的概率 2/3 1/3
  • 条件概率 在各分类中某事件的概率 1/2 2/3
  • 全概率 某种程度上可以理解先分类再分步 5/9(全局均是这个值) 5/9(全局均是这个值)
  • 后验概率,发生某事件条件下属于这个类别的概率 3/5 2/5

示例3

某学校组织学生进行答题比赛,已知共有4道A类试题,8道B类试题,12道C类试题,学生从中任选1道该题作答,学生甲答对A,B,C这3类试题的概率分别是1/2,1/4,1/6,若甲答对所选试题,则这道题是B类试题的概率为【2023春 重庆-高二校联考期中】

解答:

  • 分类(事件)总和为4+8+12=24
  • 分类(事件A)A类试题的概率是P(A类试题) = 1/6
  • 分类(事件B)B类试题的概率是P(B类试题) = 1/3
  • 分类(事件C)C类试题的概率是P(C类试题) = 1/2
  • 分类(事件A)答A类试题条件下(或者理解:范围下)答对所选试题的概率,即条件概率P(答对 | A类试题)=1/2
  • 分类(事件B)答A类试题条件下(或者理解:范围下)答对所选试题的概率,即条件概率P(答对 | B类试题)=1/4
  • 分类(事件C)答A类试题条件下(或者理解:范围下)答对所选试题的概率,即条件概率P(答对 | C类试题)=1/6
  • 同样的,对于全概率是没办法直接求出的,因此利用全概率公式
  • 全概率公式
  • P(答对) = P(A类试题) × P(答对 | A类试题) + P(B类试题) × P(答对 | B类试题) + P(C类试题) × P(答对 | C类试题)= 1/4
  • 直接使用贝叶斯公式
  • 算“逆概率”即“答对所选试题,则这道题是B类试题的概率“
  • P( B类试题 | 凉答对) = P(B类试题) × P(答对 | B类试题) / P(答对)= (1/3) × (1/4) ÷ (1/4) = 1/3

3.3 对贝叶斯公式另外一种理解

其实还有一种对贝叶斯公式的理解和解法,即分类用乘法法分步用加分的概念

3.13.1 分类

就是把分类(事件)看成分类,例如:

  • 示例1中的爷爷和奶奶
  • 示例2中的男性和女性
  • 示例3中的各类试题

简单理解就是先验概率P(X)

3.23.2 分步

分步可以看成在限定条件下,即在分类范围下的事件发生概率,例如:

  • 示例1中,在爷爷或者奶奶的总红包数量范围下,抽中100元红包的概率
  • 示例2中,在男性或者女性限定条件下,穿凉鞋的概率
  • 示例3中,在回答各类试卷的范围,答对的概率

这里的概率就是条件概率,条件概率的分母只是在所在分类或者范围下,这个分类的汇总总和

条件概率形式上使用P(W | X)或者P(答对 | B类试题)或者P( 男性 | 凉鞋) ,中间为竖线

3.33.3 全概率

此时再通过分类用乘法法分步用加分的概念,就是先用分步的思想得出各事件在全局(包含各分类的视觉下)算出全局的概率,就是联合概率

联合概率就是表示两个事件共同发生的概率

计算出同时满足各分类下各事件发生的概率后,再通过分类相加的思想,得出的就是该事件在全局的全概率

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号