机器学习中的数据拟合方法:最小二乘法详解
创作时间:
作者:
@小白创作中心
机器学习中的数据拟合方法:最小二乘法详解
引用
CSDN
1.
https://blog.csdn.net/IT_ORACLE/article/details/145161876
最小二乘法是一种广泛使用的数据拟合方法,用于在统计学和数学中找到最佳拟合曲线或模型,使得观测数据点与模型预测值之间的误差平方和最小化。本文将详细介绍最小二乘法的基本概念、线性最小二乘法的原理和实现,以及非线性最小二乘法的应用。
最小二乘法(Least Squares Method)
最小二乘法是一种广泛使用的数据拟合方法,用于在统计学和数学中找到最佳拟合曲线或模型,使得观测数据点与模型预测值之间的误差平方和最小化。以下是详细介绍:
基本概念
- 假设有一组观测数据点,希望找到一个模型 y = f(x),使得模型预测值与实际观测值的误差最小。
- 定义误差为:
- 最小二乘法的目标是最小化误差平方和:
线性最小二乘法
最常见的情况是线性模型,即。通过最小化平方误差,计算出最佳拟合的参数 a 和 b。
目标函数:
求解公式:通过对 S 分别对 a 和 b 求偏导并令其为 0,得到方程组:
解得:
其中,和分别是和的平均值。
- 代码实现:
import numpy as np
import matplotlib.pyplot as plt
# 示例数据
x = np.array([1, 2, 3, 4, 5]) # 自变量
y = np.array([2.2, 2.8, 3.6, 4.5, 5.1]) # 因变量
# 计算最小二乘法参数
n = len(x)
x_mean = np.mean(x)
y_mean = np.mean(y)
# 根据公式计算斜率和截距
b = np.sum((x - x_mean) * (y - y_mean)) / np.sum((x - x_mean) ** 2)
a = y_mean - b * x_mean
print(f"拟合直线方程:y = {a:.2f} + {b:.2f}x")
# 使用拟合直线进行预测
y_pred = a + b * x
# 绘制散点图和拟合直线
plt.scatter(x, y, color="blue", label="实际数据点")
plt.plot(x, y_pred, color="red", label="拟合直线")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.title("最小二乘法线性回归")
plt.show()
运行结果
- 输出拟合直线方程:
拟合直线方程:y = 1.39 + 0.75x
- 绘制图形:
- 蓝色散点表示原始数据。
- 红色直线表示最小二乘法拟合的直线。
扩展:非线性最小二乘法
- 如果模型 f(x) 是非线性的(如指数、对数、幂函数等),需要使用数值优化方法(如梯度下降、牛顿法)求解最优参数。
- 常用软件工具(如 MATLAB、Python 的 SciPy 库)提供了实现非线性最小二乘法的函数。
使用 SciPy 实现非线性最小二乘法
如果你的模型是非线性的(例如 y=aebxy = a e^{bx}y=aebx),可以使用 SciPy 的curve_fit方法:
代码实现
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号'-'显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False
# 示例数据
x = np.array([1, 2, 3, 4, 5]) # 自变量
y = np.array([2.2, 2.8, 3.6, 4.5, 5.1]) # 因变量
# 定义非线性模型,例如 y = a * e^(b * x)
def model(x, a, b):
return a * np.exp(b * x)
# 示例数据
x = np.array([1, 2, 3, 4, 5])
y = np.array([2.7, 7.4, 20.1, 54.6, 148.4]) # 模拟非线性数据
# 拟合模型
params, _ = curve_fit(model, x, y)
a, b = params
print(f"拟合非线性方程:y = {a:.2f} * exp({b:.2f} * x)")
# 使用模型预测
y_pred = model(x, a, b)
# 绘制结果
plt.scatter(x, y, color="blue", label="实际数据点")
plt.plot(x, y_pred, color="green", label="拟合曲线")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.title("非线性最小二乘法拟合")
plt.show()
运行结果
- 输出拟合非线性方程:
拟合非线性方程:y = 1.00 * exp(1.00 * x)
- 绘制图形:
- 蓝色散点表示实际数据点。
- 绿色曲线表示非线性模型的拟合结果。
应用领域
- 回归分析:在统计学中用于构建线性或非线性回归模型。
- 曲线拟合:在实验数据中寻找最佳拟合曲线。
- 信号处理:用于去噪和数据预测。
- 机器学习:作为线性模型训练的一部分,例如线性回归。
优点与局限性
优点:
- 方法简单且计算效率高。
- 适用于多种模型,尤其是线性模型。
局限性:
- 对离群点敏感:极端值可能显著影响拟合效果。
- 仅适用于误差为高斯分布的情形:当误差不服从正态分布时,结果可能不可靠。
热门推荐
秋意浓 思念重,有关秋思诗词,感受古人秋思,领略秋天独特的美
股票市场的三大投资策略:价值投资、成长投资与技术分析
日产与本田合并难度太大,纯电汽车联盟或许更具可行性
协和专家:慢性疼痛患者的科学饮食指南
越南文化遗产:国家软实力的重要体现

新加坡第六届新华青年文学奖揭晓:南大生曹子美摘得金奖
Arduino舵机控制入门:从原理到实战
众多普洱茶品牌和产品中,如何挑选一款适合自己口味和需求的普洱茶
唐卡中的财神该如何区分
湖南多条高速最新进展!
汽车维修技师的就业方向
如何看待别人在公共场合吸烟
头颈部鳞癌迎来首款国产PD-1,汇总头颈部肿瘤流行病学和研究进展
麸炒苍术的功效与作用及禁忌
本来无一物,何处惹尘埃!20句富有禅意诗句,顿悟之间涅槃重生
以组织学习为核心:探讨其重要性、应用与挑战
中国古代政教合一:历史与影响的探讨
七绝如何写出新意?这4首诗让你大开眼界!表达情感不拘一格
中国领跑全球电动汽车销售市场 国外发展缓慢十大原因分析
现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障
如何系统化的学习前端
意大利名人有哪些
本科专业及就业专业解读——软件工程。从零基础到精通,收藏这篇就够了!
什么是婚姻关系维护
人体自带的“止鸣穴”,3大穴位,通经络,疏肝气、耳鸣没有了!
八字命理中如何解读官杀的影响
龙岩长汀:千年古城的“焕新密码”
揭秘狗狗智商:从顶尖到低智商的六个等级
Nature:施一公/宿强团队揭示过敏反应关键机制
八字命理中的阴阳法理论:如何解析个人命运的阴阳平衡