问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

一元二次方程根的分布和判别式的应用

创作时间:
作者:
@小白创作中心

一元二次方程根的分布和判别式的应用

引用
新浪网
1.
https://m.edu.iask.sina.com.cn/jy/jVZLCpMvwD.html

一元二次方程是高中数学的重要内容,其根的分布和判别式是解题的关键。本文将详细介绍一元二次方程根的定义、根的个数与分布、判别式的应用以及根与系数的关系,并通过一个例题进行具体说明。

一、一元二次方程根的分布和判别式的应用

  1. 一元二次方程的根

使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。利用方程的根求待定系数时,只需将方程的根代入原方程,再解关于待定系数的方程。

  1. 一元二次方程根的个数与根的分布

一般地,式子$b^2-4ac$叫做方程$ax^2+$$bx+$$c=$$0$$(a≠0)$的根的判别式,通常用希腊字母$\mathit{Δ}$表示,即$\mathit{Δ}=$$b^2-4ac$。

(1)当$\mathit{Δ}=$$b^2-$$4ac >0$时,一元二次方程$ax^2+$$bx+$$c=$$0$$(a≠0)$有两个不相等的实数根。即$x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)当$\mathit{Δ}=$$b^2-4ac=0$时,一元二次方程$ax^2+$$bx+$$c=$$0$$(a≠0)$有两个相等的实数根。即$x_1=x_2=-\frac{b}{2a}$。

(3)当$\mathit{Δ}=$$b^2-4ac<0$时,一元二次方程$ax^2+$$bx+$$c=$$0$$(a≠0)$无实数根。

  1. 一元二次方程根的判别式的应用

一元二次方程根的判别式的应用主要有以下三种情况:

  • 不解方程,由根的判别式的正负性及是否为0可直接判定根的情况。
  • 根据方程根的情况,确定方程中字母系数的取值范围。
  • 应用判别式证明方程根的情况(有实根、无实根、有两个不相等实根、有两个相等实根)。
  1. 一元二次方程的根与系数的关系

当$b^2-4ac\geqslant 0$时,一元二次方程$ax^2+$$bx+$$c=$$0$$(a≠0)$有两个实数根$x_1$,$x_2$,且满足求根公式$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$,则有$x_1+$$x_2=$$\frac{-b+\sqrt{b^2-4ac}}{2a}+$$\frac{-b-\sqrt{b^2-4ac}}{2a}=$$-\frac{b}{a}$,$x_1x_2=$$\frac{-b+\sqrt{b^2-4ac}}{2a}·$$\frac{-b-\sqrt{b^2-4ac}}{2a}=$$\frac{c}{a}$。

即$x_1$,$x_2$满足$x_1+x_2=-\frac{b}{a}$,$x_1x_2=\frac{c}{a}$。

二、一元二次方程根的分布的相关例题

已知$x_1$,$x_2$是一元二次方程$x^2-4x+1=0$的两个实数根,则$x_1·x_2$等于

A.$-4$ B.$-1$ C.1 D.4

答案:C

解析:直接根据根与系数的关系求解得$x_1·x_2=$$\frac{c}{a}=1$。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号