Q-learning算法详解:从理论到实践的完整指南
创作时间:
作者:
@小白创作中心
Q-learning算法详解:从理论到实践的完整指南
引用
CSDN
1.
https://blog.csdn.net/qq_44246618/article/details/145668611
强化学习是当前人工智能领域的一个热门研究方向,其中Q-learning算法是最基础也是最重要的算法之一。本文将从基本概念出发,详细讲解Q-learning算法的核心思想和具体步骤,并通过MATLAB和Python两种编程语言实现该算法,帮助读者全面理解并掌握这一重要算法。
Q-learning算法详解
- Q-learning算法简介
- Q-Learning算法的基本概念
- Q-Learning算法的核心思想
- Q-learning算法步骤
- Q-Learning算法的特点
- MATLAB 实现 Q-learning
- Python 实现 Q-learning
- 参考
强化学习属于机器学习,但与以前的监督学习和无监督学习的处理对象和任务都不同。监督学习和无监督学习处理的都是静态的数据,比如文本、图像等,主要是解决分类、回归及聚类等问题。
而强化学习要解决的是动态的决策问题,是根据不断变化的环境,做出不同的决策,最后生成一个动作序列,以达到某种目的或者最优,处理的数据是动态的。
强化学习的目的,是让计算机学会自主的进行动态的决策。阿尔法围棋软件就是典型的强化学习成果,最近推出的ChartGPT的核心算法,也是基于神经网络组成的强化学习框架。
1. Q-learning算法简介
Q-learning是一种基于值迭代的强化学习算法,属于无模型(model-free)强化学习方法。它通过学习状态-动作值函数(Q值)来优化策略,使得智能体在给定环境中获得最大累计奖励。
Q-Learning算法的基本概念
- 状态(State):环境的某个特定情况或配置。
- 动作(Action):在给定状态下可以采取的可能行为。
- 奖励(Reward):采取某个动作后从环境中获得的即时回报。
- 策略(Policy):从状态到动作的映射,指导如何根据当前状态选择动作。
- Q函数(Q-value):表示在状态s下采取动作a的期望回报。
在强化学习中,奖励非常重要,因为样本没有标签,理论上是奖励在引领学习。一般需要人工设置,是强化学习中较为复杂的难点。
Q-Learning算法的核心思想
Q-Learning通过贝尔曼(Bellman)方程来更新Q值,其公式为:
Q-learning算法步骤
1、初始化 Q 表:将所有状态-动作对的 Q 值设为零或随机值
2、选择动作:使用 ε-greedy 策略选择动作:
- 以概率 ϵ 进行随机探索
- 以概率 1−ϵ 选择当前 Q 值最大的动作(贪心策略)
3、执行动作 & 观察奖励:执行动作 a,观察环境的新状态 s′ 和奖励 r
4、更新 Q 值:使用 Q-learning 公式更新 Q 表
5、重复:直到满足终止条件(如达到最大迭代次数或收敛)
Q-Learning算法的特点
- 无需模型:Q-Learning不需要环境的动态模型,通过与环境的交互来学习。
- 离线学习:可以在没有实时环境反馈的情况下,使用已经收集的数据来更新Q值。
- 收敛性:在满足一定条件下,Q-Learning能够收敛到最优策略。
MATLAB 实现 Q-learning
下面是一个基于 MATLAB 的 Q-learning 示例,应用于一个 5x5 的网格世界(Grid World)。
clc; clear; close all;
% 参数设置
alpha = 0.1; % 学习率
gamma = 0.9; % 折扣因子
epsilon = 0.1; % 探索概率
numEpisodes = 500; % 训练回合数
numStates = 25; % 5x5 网格
numActions = 4; % 上、下、左、右
Q = zeros(numStates, numActions); % 初始化 Q 表
% 设定动作映射 (上=1, 下=2, 左=3, 右=4)
actionMap = [-5, 5, -1, 1];
% 训练 Q-learning 代理
for episode = 1:numEpisodes
state = randi(numStates); % 随机初始化状态
while state ~= 25 % 终止状态(假设25号格子是终点)
if rand < epsilon % 采取随机动作(探索)
action = randi(numActions);
else % 采取贪心策略(利用)
[~, action] = max(Q(state, :));
end
% 计算下一个状态
nextState = state + actionMap(action);
% 边界检查
if nextState < 1 || nextState > numStates || ...
(mod(state, 5) == 0 && action == 4) || ...
(mod(state, 5) == 1 && action == 3)
nextState = state; % 保持不变
end
% 设定奖励函数
if nextState == 25
reward = 100;
else
reward = -1;
end
% 更新 Q 值
Q(state, action) = Q(state, action) + alpha * ...
(reward + gamma * max(Q(nextState, :)) - Q(state, action));
% 更新状态
state = nextState;
end
end
% 显示最终 Q 值
disp('训练后的Q表:');
disp(Q);
Python 实现 Q-learning
Python 版本使用 numpy 和 gym 库,应用于 OpenAI Gym 的 FrozenLake 环境。
import numpy as np
import gym
# 创建环境
env = gym.make("FrozenLake-v1", is_slippery=False)
# 超参数
alpha = 0.1 # 学习率
gamma = 0.9 # 折扣因子
epsilon = 0.1 # 探索率
num_episodes = 500 # 训练回合数
num_states = env.observation_space.n
num_actions = env.action_space.n
# 初始化 Q 表
Q = np.zeros((num_states, num_actions))
# Q-learning 训练
for episode in range(num_episodes):
state = env.reset()[0] # 初始化状态
done = False
while not done:
# 选择动作(ε-贪心策略)
if np.random.uniform(0, 1) < epsilon:
action = env.action_space.sample() # 随机探索
else:
action = np.argmax(Q[state, :]) # 贪心策略
# 执行动作
next_state, reward, done, _, _ = env.step(action)
# 更新 Q 值
Q[state, action] = Q[state, action] + alpha * (
reward + gamma * np.max(Q[next_state, :]) - Q[state, action]
)
# 更新状态
state = next_state
# 显示最终 Q 表
print("训练后的 Q 表:")
print(Q)
# 评估学习效果
state = env.reset()[0]
env.render()
for _ in range(10):
action = np.argmax(Q[state, :]) # 选择最佳动作
state, _, done, _, _ = env.step(action)
env.render()
if done:
break
参考
热门推荐
从争吵到理解:情侣有效沟通的5个关键
用非暴力沟通改善伴侣关系,从争吵到理解
破镜重圆公司:专业团队助力情感挽回,成功率高达92%
从情绪管理到有效沟通:提升人际关系的实用指南
研究生学历还“值回票价”吗?最新数据告诉你真相
挚盟医药新药获突破性认定,有望攻克乙肝耐药难题
鼻干耳烫要警惕,教你正确测量猫咪体温
从-20℃到40℃,猫咪的耐受温度范围及健康护理指南
WHO发布最新乙肝治疗指南,扩大治疗范围并更新一线用药方案
一文读懂鱼缸选购要点:尺寸、形状、材质全解析
从移动支付到IoT保护,OP-TEE如何保障设备安全
苹果山楂饮:健脾消食的传统饮品
古代园林设计和风水理念
千年前的“异地恋”:李商隐诗句引发网友共鸣
.Git目录泄露:原因、危害与防护指南
从爱情到人生:李商隐《相见时难别亦难》的现代解读
米其林餐厅清洁标准:从上到下、细节制胜的专业之道
科学擦拭防病菌:学校医院商场清洁消毒指南
世界肝炎日:中联肝健康促进中心掀起全民防治热潮
秋冬护肝指南:乙肝患者的营养管理
苹果采摘机器人背后的黑科技揭秘
智能采果黑科技:自动采摘机器人如何改变传统农业?
IGBT驱动电路设计的最新趋势与技术创新
TDF/TAF/TMF,抗乙肝神药怎么吃才对?
马凡舒加盟春晚主持阵容,用实力赢得观众认可
马凡舒:从体育节目主持人到春晚舞台的新生代女神
心理咨询教你如何处理悼念朋友后的心理创伤
挽联:中华民族尊祖敬亲的孝道文化
悼念挚友,你有哪些经典诗句?
从最年轻主持人到被吐槽,张舒越的春晚之路发生了什么?