Q-learning算法详解:从理论到实践的完整指南
创作时间:
作者:
@小白创作中心
Q-learning算法详解:从理论到实践的完整指南
引用
CSDN
1.
https://blog.csdn.net/qq_44246618/article/details/145668611
强化学习是当前人工智能领域的一个热门研究方向,其中Q-learning算法是最基础也是最重要的算法之一。本文将从基本概念出发,详细讲解Q-learning算法的核心思想和具体步骤,并通过MATLAB和Python两种编程语言实现该算法,帮助读者全面理解并掌握这一重要算法。
Q-learning算法详解
- Q-learning算法简介
- Q-Learning算法的基本概念
- Q-Learning算法的核心思想
- Q-learning算法步骤
- Q-Learning算法的特点
- MATLAB 实现 Q-learning
- Python 实现 Q-learning
- 参考
强化学习属于机器学习,但与以前的监督学习和无监督学习的处理对象和任务都不同。监督学习和无监督学习处理的都是静态的数据,比如文本、图像等,主要是解决分类、回归及聚类等问题。
而强化学习要解决的是动态的决策问题,是根据不断变化的环境,做出不同的决策,最后生成一个动作序列,以达到某种目的或者最优,处理的数据是动态的。
强化学习的目的,是让计算机学会自主的进行动态的决策。阿尔法围棋软件就是典型的强化学习成果,最近推出的ChartGPT的核心算法,也是基于神经网络组成的强化学习框架。
1. Q-learning算法简介
Q-learning是一种基于值迭代的强化学习算法,属于无模型(model-free)强化学习方法。它通过学习状态-动作值函数(Q值)来优化策略,使得智能体在给定环境中获得最大累计奖励。
Q-Learning算法的基本概念
- 状态(State):环境的某个特定情况或配置。
- 动作(Action):在给定状态下可以采取的可能行为。
- 奖励(Reward):采取某个动作后从环境中获得的即时回报。
- 策略(Policy):从状态到动作的映射,指导如何根据当前状态选择动作。
- Q函数(Q-value):表示在状态s下采取动作a的期望回报。
在强化学习中,奖励非常重要,因为样本没有标签,理论上是奖励在引领学习。一般需要人工设置,是强化学习中较为复杂的难点。
Q-Learning算法的核心思想
Q-Learning通过贝尔曼(Bellman)方程来更新Q值,其公式为:
Q-learning算法步骤
1、初始化 Q 表:将所有状态-动作对的 Q 值设为零或随机值
2、选择动作:使用 ε-greedy 策略选择动作:
- 以概率 ϵ 进行随机探索
- 以概率 1−ϵ 选择当前 Q 值最大的动作(贪心策略)
3、执行动作 & 观察奖励:执行动作 a,观察环境的新状态 s′ 和奖励 r
4、更新 Q 值:使用 Q-learning 公式更新 Q 表
5、重复:直到满足终止条件(如达到最大迭代次数或收敛)
Q-Learning算法的特点
- 无需模型:Q-Learning不需要环境的动态模型,通过与环境的交互来学习。
- 离线学习:可以在没有实时环境反馈的情况下,使用已经收集的数据来更新Q值。
- 收敛性:在满足一定条件下,Q-Learning能够收敛到最优策略。
MATLAB 实现 Q-learning
下面是一个基于 MATLAB 的 Q-learning 示例,应用于一个 5x5 的网格世界(Grid World)。
clc; clear; close all;
% 参数设置
alpha = 0.1; % 学习率
gamma = 0.9; % 折扣因子
epsilon = 0.1; % 探索概率
numEpisodes = 500; % 训练回合数
numStates = 25; % 5x5 网格
numActions = 4; % 上、下、左、右
Q = zeros(numStates, numActions); % 初始化 Q 表
% 设定动作映射 (上=1, 下=2, 左=3, 右=4)
actionMap = [-5, 5, -1, 1];
% 训练 Q-learning 代理
for episode = 1:numEpisodes
state = randi(numStates); % 随机初始化状态
while state ~= 25 % 终止状态(假设25号格子是终点)
if rand < epsilon % 采取随机动作(探索)
action = randi(numActions);
else % 采取贪心策略(利用)
[~, action] = max(Q(state, :));
end
% 计算下一个状态
nextState = state + actionMap(action);
% 边界检查
if nextState < 1 || nextState > numStates || ...
(mod(state, 5) == 0 && action == 4) || ...
(mod(state, 5) == 1 && action == 3)
nextState = state; % 保持不变
end
% 设定奖励函数
if nextState == 25
reward = 100;
else
reward = -1;
end
% 更新 Q 值
Q(state, action) = Q(state, action) + alpha * ...
(reward + gamma * max(Q(nextState, :)) - Q(state, action));
% 更新状态
state = nextState;
end
end
% 显示最终 Q 值
disp('训练后的Q表:');
disp(Q);
Python 实现 Q-learning
Python 版本使用 numpy 和 gym 库,应用于 OpenAI Gym 的 FrozenLake 环境。
import numpy as np
import gym
# 创建环境
env = gym.make("FrozenLake-v1", is_slippery=False)
# 超参数
alpha = 0.1 # 学习率
gamma = 0.9 # 折扣因子
epsilon = 0.1 # 探索率
num_episodes = 500 # 训练回合数
num_states = env.observation_space.n
num_actions = env.action_space.n
# 初始化 Q 表
Q = np.zeros((num_states, num_actions))
# Q-learning 训练
for episode in range(num_episodes):
state = env.reset()[0] # 初始化状态
done = False
while not done:
# 选择动作(ε-贪心策略)
if np.random.uniform(0, 1) < epsilon:
action = env.action_space.sample() # 随机探索
else:
action = np.argmax(Q[state, :]) # 贪心策略
# 执行动作
next_state, reward, done, _, _ = env.step(action)
# 更新 Q 值
Q[state, action] = Q[state, action] + alpha * (
reward + gamma * np.max(Q[next_state, :]) - Q[state, action]
)
# 更新状态
state = next_state
# 显示最终 Q 表
print("训练后的 Q 表:")
print(Q)
# 评估学习效果
state = env.reset()[0]
env.render()
for _ in range(10):
action = np.argmax(Q[state, :]) # 选择最佳动作
state, _, done, _, _ = env.step(action)
env.render()
if done:
break
参考
热门推荐
甲状腺素低的症状
线上交友软件的发展变迁:从文字交流到灵魂契合
当孩子出现问题跟孩子无关,跟父亲有关
父亲不教育孩子的后果
为什么打喷嚏时老外总说“Bless you”?
葡萄糖注射液详细的用法用量是什么
公交车多次失控背后:压力之下的中年司机群体
从零到一,AI教你如何撰写完美访谈提纲
标准化管理的目的和意义
咽喉肿痛一招消除
800V充电系统技术分析与应用实践
充电功率的计算方法及其对充电效率的影响
食品研发从业者的就业方向是什么
岳云鹏参演电影盘点:从《煎饼侠》到《中国乒乓》
福特、马自达突发!两款经典车型宣告停产,曾年销百万辆!
生日到底过农历还是阳历?选择指南来了
股票绑定银行卡更换指南:三种常见情况及处理方法
数据结构——链表(超详细解读)
当代画梅,难以逾越的三座 “高峰”
仙人球繁殖指南:如何快速繁殖仙人球并注意哪些事项
大拇指截断接好怎么评工伤
大拇指受伤工伤鉴定标准及赔偿指南
中国队拿下金牌榜、奖牌榜双料第一!亚冬会见证他们的“第一次”
历史第100金!双榜第一!中国代表团亚冬会首日表现出色
行道树和孤植树选择标准及常用乔木推荐
出现这些症状,小心肾结石!查出肾结石,正确应对做好6点!
腰椎间盘突出也许不是你腰疼的真正原因!医生想说......
南宁到九寨沟:全程距离、动车情况及最便捷出行方式解析
五位被伤病毁掉的NBA球星:三大状元领衔,开拓者两人上榜
纳米技术是什么?纳米技术