基于暗通道先验的图像去雾算法解析与实现
创作时间:
作者:
@小白创作中心
基于暗通道先验的图像去雾算法解析与实现
引用
CSDN
1.
https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/145707812
算法背景
何凯明团队于2009年提出的暗通道先验去雾算法《single image haze removal using dark channel prior》,通过统计发现:在无雾图像的局部区域中,至少存在一个颜色通道的像素值趋近于零。这一发现为图像去雾提供了重要的理论依据,其数学模型可表示为:
I(x) = J(x)t(x) + A(1 - t(x))
其中:
- I(x):观测到的有雾图像
- J(x):待恢复的无雾图像
- t(x):透射率
- A:全局大气光值
算法原理
1. 暗通道计算
通过取RGB三通道最小值并进行形态学腐蚀操作:
def dark_channel(img, size=15):
r, g, b = cv2.split(img)
min_img = cv2.min(r, cv2.min(g, b))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
return cv2.erode(min_img, kernel)
2. 大气光估计
选取图像中最亮像素的0.1%作为大气光值:
def get_atmo(img, percent=0.001):
mean_perpix = np.mean(img, axis=2).reshape(-1)
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
return np.mean(mean_topper)
3. 透射率估计
t(x) = 1 - ω ⋅ dark_channel(I/A)
def get_trans(img, atom, w=0.95):
x = img / atom
return 1 - w * dark_channel(x, 7)
4. 引导滤波优化
使用灰度图作为引导图像进行透射率优化:
# 引导滤波
def guided_filter(p, i, r, e):
"""
:param p: input image
:param i: guidance image
:param r: radius
:param e: regularization
:return: filtering output q
"""
# 1
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
# 2
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
# 3
a = cov_Ip / (var_I + e)
b = mean_p - a * mean_I
# 4
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
# 5
q = mean_a * i + mean_b
return q
完整实现代码
import cv2
import numpy as np
import os
# 计算雾化图像的暗通道
def dark_channel(img, size=15):
r, g, b = cv2.split(img)
min_img = cv2.min(r, cv2.min(g, b)) # 取最暗通道
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
dc_img = cv2.erode(min_img, kernel)
return dc_img
# 估计全局大气光值
def get_atmo(img, percent=0.001):
mean_perpix = np.mean(img, axis=2).reshape(-1)
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
return np.mean(mean_topper)
# 估算透射率图
def get_trans(img, atom, w=0.95):
x = img / atom
t = 1 - w * dark_channel(x, 15)
return t
# 引导滤波
def guided_filter(p, i, r, e):
"""
:param p: input image
:param i: guidance image
:param r: radius
:param e: regularization
:return: filtering output q
"""
# 1
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
# 2
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
# 3
a = cov_Ip / (var_I + e)
b = mean_p - a * mean_I
# 4
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
# 5
q = mean_a * i + mean_b
return q
def dehaze(im):
img = im.astype('float64') / 255
img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
atom = get_atmo(img)
trans = get_trans(img, atom)
trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
trans_guided = cv2.max(trans_guided, 0.25)
result = np.empty_like(img)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
return result * 255
if __name__ == '__main__':
image_path= 'images/img.png'
im = cv2.imread(image_path)
img = im.astype('float64') / 255
img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
atom = get_atmo(img)
trans = get_trans(img, atom)
trans_guided = guided_filter(trans, img_gray, 10, 0.0001)
trans_guided = cv2.max(trans_guided, 0.25)
result = np.empty_like(img)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
cv2.imwrite('images/img.png', result * 255)
热门推荐
一“盒”在手,安全我有:沙盒软件必备指南
丁香和生姜泡水的功效与禁忌
圣诞前夜家居魔法!DIY创意与细节布置,打造浪漫节日氛围的终极秘诀
在日本,年轻人把圣诞节过成了第二个情人节
2025年两克拉莫桑钻价格全解析:从几百到几千,如何选购优质莫桑钻?
鲁南制药揭秘:花生与痛风的关系,适宜食用与不宜食用人群
男人南瓜子每天吃多少比较好
解密句子结构:一篇让你彻底搞懂句子成分的文章
爱眼护眼小常识有哪些
山茱萸和枸杞子泡水的功效是什么
天津菜,别样的城市烟火
暗黑2圣骑士技能加点大揭秘!双热与祝福之锤,谁才是你的最佳选择?
暗黑2圣骑士技能加点大揭秘!双热与祝福之锤,谁才是你的最佳选择?
司马家族:阴险狡诈背后的善行与贡献
智能制造和工业4.0推动工业的数字化转型
弘一法师临终前,给弟子留下了一段话,让后人至今不明原因
大蜜丸、水蜜丸、浓缩丸有什么区别?各自有什么优缺点?
补中益气丸大蜜丸好还是浓缩丸好?水丸和浓缩丸哪个更优?
新能源电动车轮胎更换指南:为什么比燃油车更费?
“乳膏”“软膏”傻傻分不清楚?
“乳膏”“软膏”傻傻分不清楚?
双鱼座如何变得强大:情感的力量与成长
深入解析:睡眠质量评估的关键监测指标与影响因素
出纳工作的特点及实务指南
韦特塔罗洗牌切牌方法占卜教学
揭秘:香港“四大家族”如何做财富传承?
「这族群」恐是荨麻疹高发群!中医教你按摩4穴位舒缓瘙痒不适
解读基础公卫体系必备药物——地塞米松(Dexamethasone)!
抑郁症是性格软弱的表现吗?
左心室假腱索是什么意思?