机器学习 4种常见目标函数介绍+代码实现
创作时间:
作者:
@小白创作中心
机器学习 4种常见目标函数介绍+代码实现
引用
CSDN
1.
https://blog.csdn.net/qq_44886601/article/details/140891151
目标函数在机器学习中扮演着至关重要的角色,它直接影响模型的性能和学习效果。本文将介绍四种常见的目标函数:线性函数、多项式函数、高斯函数和sigmoid函数,并通过具体的代码实现帮助读者理解它们在实际应用中的效果。
1. 线性函数
线性函数是机器学习、深度学习中最简单的目标函数之一。它假设样本在原始特征空间上是线性可分的,因此在不引入额外的复杂度的情况下,直接在原始特征空间上进行内积计算。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import SVC
# 生成一个线性不可分的数据集
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
# 使用线性核函数的 SVM 分类器
svm_linear = SVC(kernel='linear')
svm_linear.fit(X, y)
# 绘制决策边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, marker='o', edgecolors='k')
# 生成网格数据用于绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = svm_linear.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
# 绘制决策边界和支持向量
plt.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.Paired)
plt.scatter(svm_linear.support_vectors_[:, 0], svm_linear.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
plt.title('Linear SVM Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
这段代码使用线性目标函数的 SVM 对数据进行二分类、线性分类,并绘制了决策边界。
2. 多项式目标函数
多项式目标函数是支持向量机(SVM)中常用的一种目标函数。通过将样本映射到高维空间来实现非线性分类。与线性目标函数不同,多项式目标函数可以处理线性不可分的情况。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import SVC
# 生成一个线性不可分的数据集
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
# 使用多项式核函数的 SVM 分类器
svm_poly = SVC(kernel='poly', degree=3) # 3次多项式核函数
svm_poly.fit(X, y)
# 绘制决策边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, marker='o', edgecolors='k')
# 生成网格数据用于绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = svm_poly.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
# 绘制决策边界和支持向量
plt.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.Paired)
plt.scatter(svm_poly.support_vectors_[:, 0], svm_poly.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
plt.title('Polynomial SVM Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
这段代码通过多项式目标函数的 SVM 进行分类,展示了多项式核函数在处理非线性可分数据时的效果。
3. 高斯函数
高斯目标函数,也称为径向基函数(RBF)目标函数,是支持向量机(SVM)中常用的一种目标函数。它将样本映射到无限维的特征空间,通过衡量样本之间的相似性来进行非线性分类。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import SVC
# 生成一个线性不可分的数据集
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
# 使用高斯核函数的 SVM 分类器
svm_rbf = SVC(kernel='rbf', gamma=0.5) # gamma 控制高斯核的宽度
svm_rbf.fit(X, y)
# 绘制决策边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, marker='o', edgecolors='k')
# 生成网格数据用于绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = svm_rbf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
# 绘制决策边界和支持向量
plt.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.Paired)
plt.scatter(svm_rbf.support_vectors_[:, 0], svm_rbf.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
plt.title('RBF SVM Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
这段代码展示了高斯目标函数的 SVM 分类器。将高斯核的宽度参数设定为 0.5,并绘制出了决策边界和支持向量。
4. sigmoid 函数
sigmoid 函数是机器学习、深度学习常见的函数,可以将样本映射到非线性空间,处理线性不可分的情况。
import torch.nn as nn
import matplotlib.pyplot as plt
import torch
from torch import optim
import numpy as np
torch.manual_seed(1) # 保证程序随机生成数一样
x1 = torch.rand(200) * 2
x2 = torch.rand(200) * 2
data = zip(x1, x2)
pos = [] # 定义类型 1
neg = [] # 定义类型 2
def classification(data):
for i in data:
if (i[1] - i[0] < 0):
pos.append(i)
else:
neg.append(i)
classification(data)
pos_x = [i[0] for i in pos]
pos_y = [i[1] for i in pos]
neg_x = [i[0] for i in neg]
neg_y = [i[1] for i in neg]
plt.scatter(pos_x, pos_y, c='r')
plt.scatter(neg_x, neg_y, c='b')
plt.show()
x_data = [[i[0], i[1]] for i in pos]
x_data.extend([[i[0], i[1]] for i in neg])
x_data = torch.Tensor(x_data) # 输入数据 feature
y_data = [1 for i in range(len(pos))]
y_data.extend([0 for i in range(len(neg))])
y_data = torch.Tensor(y_data).view(-1, 1) # 对应的标签
class LogisticRegressionModel(nn.Module): # 定义网络
def __init__(self):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.linear(x)
x = self.sigmoid(x)
return x
model = LogisticRegressionModel()
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
for epoch in range(10000):
y_pred = model(x_data)
loss = criterion(y_pred, y_data) # 计算损失值
if epoch % 1000 == 0:
print(epoch, loss.item()) # 打印损失值
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 梯度更新
w = model.linear.weight[0] # 取出训练完成的结果
w0 = w[0]
w1 = w[1]
b = model.linear.bias.item()
with torch.no_grad(): # 绘制决策边界,这里不需要计算梯度
x = torch.arange(0, 3).view(-1, 1)
y = (- w0 * x - b) / w1
plt.plot(x.numpy(), y.numpy())
plt.scatter(pos_x, pos_y, c='r')
plt.scatter(neg_x, neg_y, c='b')
plt.xlim(0, 2)
plt.ylim(0, 2)
plt.show()
这段代码生成包含两个特征的坐标点,然后通过 sigmoid 实现逻辑回归。训练过程及结果如下:
热门推荐
如何降低软件开发的成本
如何评估黄金股的投资价值?其价值受哪些因素左右?
浅谈钢笔的笔尖粗细标码和实际书写差异
长沙市中心医院:警惕头皮癌,早发现早治疗
“女大不避父”的后果,超乎你想象!
衣帽架选购指南:材质特点与选购要点全解析
如何在Scopus上搜索文献
肉毒素注射后多久见效?
如何从零开始构建你的市场进入策略 (Go-to-Market, GTM)
如何看木纹 如何从木纹分别木种
虚拟陪伴,我们准备好了吗?
胡雪岩失败的真正原因,巧妙运作保存住胡庆余堂百年品牌
刘禹锡《唐郎中宅与诸公同饮酒看牡丹》赏析:在花前酒后,品味岁月的哀愁
芬兰医疗:预防为心,智领健康未来
白云冯氏:800年来在流溪河畔帽峰山边开枝散叶
牙医亲授:如何正确预防和去除牙结石
上海界大佬只能是他,杜月笙、黄金荣见了都害怕
西北食韵:探寻西北菜,领略塞外风情的醇厚滋味
如何控制反应釜内的温度以优化SCR脱硝效率?
让大脑更年轻的水果?浆果凭什么排第一?
最适合夏天吃的14种蔬菜,赶快端上餐桌吧!
清朝入关:山海关下的王朝更迭
脊髓性肌萎缩症丨 SMA 康复治疗的应用
单弯梁电动车车架结构的制作方法
全球已批准上市四款MEK1/2抑制剂:曲美替尼、比美替尼、考比替尼、司美替尼
同感心理机制解析
柯利明正式宣佈新身份:萬達電影實際控制人
黑神话悟空:杨戬为什么要暗中帮助孙悟空?英雄相惜还是另有所图
北京警方全力做好中小学幼儿园2025年春季学期开学安保工作
明确解析:含税运价格与离岸价格的深度对比