决策树回归(概念+实例)
创作时间:
作者:
@小白创作中心
决策树回归(概念+实例)
引用
CSDN
1.
https://blog.csdn.net/weixin_47151388/article/details/138306550
决策树回归(Decision Tree Regression)是一种常用的机器学习算法,用于预测连续型变量的取值。它基于树结构来对数据进行建模和预测,通过将数据集划分为不同的区域,并在每个区域内预测一个常数值来实现回归任务。
基本概念
决策树回归的原理
决策树回归通过构建一颗树结构来对数据进行建模和预测。树的每个内部节点表示一个属性/特征,每个叶节点表示一个输出值。决策树的构建过程是一个递归的过程,它通过选择最佳的属性/特征来进行数据划分,使得划分后子集的输出值尽可能接近真实值。
决策树的构建过程主要包括以下几个步骤:
- 选择最佳划分属性/特征:通过某种指标(如信息增益、基尼系数)选择最佳的属性/特征来进行数据划分。
- 划分数据集:根据选择的属性/特征将数据集划分为多个子集。
- 递归构建子树:对每个子集递归地应用上述步骤,直到满足停止条件(如达到最大深度、节点中样本数量小于阈值等)为止。
在预测阶段,决策树通过将输入样本沿着树的路径进行遍历,并最终到达叶节点,然后将该叶节点的输出值作为预测结果。
构建决策树回归模型的步骤
构建决策树回归模型的一般步骤如下:
- 准备数据集:准备包含输入特征和对应输出值的数据集。
- 选择划分属性:根据某种指标(如均方误差、平方损失)选择最佳的划分属性/特征。
- 划分数据集:根据选择的划分属性将数据集划分为多个子集。
- 递归构建子树:对每个子集递归地应用上述步骤,直到满足停止条件。
- 生成决策树:构建完整的决策树结构。
决策树回归的优缺点
优点:
- 易于理解和解释:决策树可以直观地呈现,易于理解和解释,可以帮助分析人员做出决策。
- 能够处理非线性关系:决策树可以处理非线性关系,不需要对数据进行线性假设。
- 对数据的缺失值不敏感:决策树在构建过程中可以处理数据的缺失值。
缺点:
- 容易过拟合:决策树容易过拟合训练数据,特别是在数据量较小或树的深度较大时。
- 不稳定性:数据的小变化可能导致树结构的显著改变,使得决策树不够稳定。
- 难以处理连续性特征:决策树在处理连续性特征时,需要对其进行离散化处理,可能会损失一部分信息。
决策树回归的应用场景
决策树回归在许多领域都有广泛的应用,特别是在以下几个方面:
- 金融领域:用于预测股票价格、货币汇率等金融指标。
- 医疗领域:用于预测疾病风险、药物反应等医疗相关问题。
- 工业领域:用于预测生产效率、设备故障率等工业数据。
- 零售领域:用于销量预测、市场需求分析等零售业务。
实例
在这个示例中,我们首先生成了一个简单的示例数据集,然后将数据集划分为训练集和测试集。接着,我们创建了一个最大深度为3的决策树回归模型,并使用训练数据对模型进行了训练。最后,我们使用训练好的模型对训练集和测试集进行了预测,并计算了均方误差。同时,我们还绘制了决策树回归模型在训练集上的拟合情况。
# 导入所需的库
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
# 生成示例数据集
np.random.seed(0)
X = np.random.rand(100, 1) * 10 # 生成100个0到10之间的随机数作为特征
y = 2 * X.squeeze() + np.random.randn(100) # 生成对应的目标值,y = 2 * x + 噪声
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建并训练决策树回归模型
regressor = DecisionTreeRegressor(max_depth=3) # 设置决策树的最大深度为3
regressor.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred_train = regressor.predict(X_train)
y_pred_test = regressor.predict(X_test)
# 计算训练集和测试集的均方误差
mse_train = mean_squared_error(y_train, y_pred_train)
mse_test = mean_squared_error(y_test, y_pred_test)
print("训练集上的均方误差:", mse_train)
print("测试集上的均方误差:", mse_test)
# 绘制决策树回归模型在训练集上的拟合情况
plt.figure(figsize=(10, 6))
plt.scatter(X_train, y_train, color='blue', label='Training data')
plt.scatter(X_test, y_test, color='green', label='Testing data')
plt.plot(np.sort(X_train, axis=0), regressor.predict(np.sort(X_train, axis=0)), color='red', linewidth=2, label='Decision Tree Regression')
plt.title('Decision Tree Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
热门推荐
补蛋白的食物有哪些?怎么搭配
为什么说基本面分析是找到优质股票的关键?
北京南锣鼓巷旅游攻略
体重稳定在这个范围内更长寿 国家版减肥指南来了 细化到地区
蚕宝宝的脚为什么粘粘的?
海上日出的诗句,孟浩然如何描绘这份奇观?
拉响警报!汇金科技或被*ST
王者荣耀安琪拉玩法攻略:技能详解与实战技巧
桂圆干产地分布与主要品种介绍
天津的城市建设和基础设施如何?这些因素如何提升居民生活质量?
租赁房屋要注意哪些事项和要求
如何正确进行除权操作?这种操作对股票价格有何影响?
揭秘骨骼生长的神奇密码——骨龄
取代还是融合?当传统复材成型工艺遇到3D打印后的创新路径
HRBP是什么?大企业都在招HRBP的原因
电动车轮胎气压标准:多少PSI合适?
胰岛素的 "血糖保卫战":深度解析血糖调控与糖尿病防治
历史前十球星生涯总决赛胜率如何?詹皇40%仅第十,邓肯这么强!
中国退休族,在日本泰国被割千金
肾病专家邓立武:IgA肾病10年必尿毒症?别慌!这3个指标才是关键
公司合同到期续签还要写原来入职日期吗
单克隆抗体:从基础概念到制备应用
人民日报:深化中俄人文交流合作——让中俄两国人民的心靠得更近
最新工资扣税标准是怎样的
玄学 : 增加福报的7个小方法
不锈钢管酸洗钝化处理:原理、流程与应用
大宇带给玩家的经典游戏,绝对不止《仙剑奇侠传》和《轩辕剑》!
横纹肌溶解症的成因及预防
华西口腔医学博物馆:中国口腔医学发展史的见证
金曜石的功效与作用