决策树算法入门:从零开始理解决策过程
创作时间:
作者:
@小白创作中心
决策树算法入门:从零开始理解决策过程
引用
CSDN
1.
https://m.blog.csdn.net/gs80140/article/details/144951380
决策树是一种常见的机器学习算法,可以用于分类和回归问题。它通过树形结构对特征进行逐步划分来进行预测。本文将从决策树的结构、类型、核心步骤、常见划分标准、算法实现、优缺点、过拟合与剪枝处理以及Python实现示例等多个方面,全面介绍决策树算法的基础知识。
1. 决策树的结构
- 根节点(Root Node):树的起始节点,表示整个数据集。
- 内部节点(Internal Node):每个内部节点代表一个特征,根据该特征的某个值对数据集进行划分。
- 叶子节点(Leaf Node):最终的预测结果节点,表示类别标签或回归值。
2. 决策树的类型
- 分类决策树(Classification Tree):输出离散类别,例如 “是/否”。
- 回归决策树(Regression Tree):输出连续值,例如房价预测。
3. 决策树的核心步骤
- 选择最佳特征(划分标准):根据某种划分标准来选择最优的划分特征。
- 递归划分:对数据集进行划分,直到满足停止条件。
- 停止条件:
- 节点样本数少于预设阈值。
- 特征集为空,或划分无法提升准确率。
4. 常见划分标准
5. 决策树算法的常见实现
- ID3(Iterative Dichotomiser 3):使用信息增益作为划分标准,适用于离散型特征。
- C4.5:改进 ID3,使用信息增益率,支持连续型特征。
- CART(Classification and Regression Tree):同时用于分类和回归,基于基尼系数或最小均方误差。
6. 决策树的优缺点
优点:
- 直观易懂,模型可视化友好。
- 对缺失值和不相关特征不敏感。
- 不需要数据预处理,如标准化。
缺点:
- 易过拟合,需要通过剪枝(Pruning)控制树的深度。
- 对样本变化敏感,轻微的样本改变可能导致树结构变化。
- 对于高维特征的表现可能不如其他方法,如随机森林或支持向量机。
7. 过拟合与剪枝
- 预剪枝(Pre-Pruning):在树构建过程中限制树的生长条件,如限制深度、叶子节点样本数。
- 后剪枝(Post-Pruning):先构建完整决策树,再根据验证集对树进行简化,去掉不必要的节点。
8. 决策树在 Python 中的实现示例
可以使用 sklearn 轻松实现决策树:
代码示例
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
# 加载示例数据集
iris = load_iris()
X, y = iris.data, iris.target
# 创建决策树模型
clf = DecisionTreeClassifier(criterion='gini', max_depth=3)
clf.fit(X, y)
# 可视化决策树
plt.figure(figsize=(10, 8))
tree.plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()
参数解释:
criterion
:划分标准,可选'gini'
(基尼系数)或'entropy'
(熵)。max_depth
:限制树的最大深度,防止过拟合。
9. 应用场景
- 医疗诊断:根据患者的症状判断疾病类型。
- 金融领域:用户信用评分、欺诈检测。
- 风险管理:根据数据预测风险等级。
本文原文来自CSDN
热门推荐
装修避坑必读:入住后才发现的设计误区与解决方案
装修避坑必读:入住后才发现的设计误区与解决方案
梦想家!埃隆·马斯克的商业哲思和实际行动
深入探讨毛利率:企业盈利的核心指标
怎样计算毛利率
深入浅出:旋转变位编码(RoPE)在现代大语言模型中的应用
揭秘汽车前后桥:结构设计与载重能力的深度解析
当"极致"成为信仰:雷军与小米SU7 Ultra的破界之夜
形而上学的变迁:从黑格尔的绝对理念到马克思的历史唯物主义
中国传统文化符号在新中式家具设计中的应用研究
漆器艺术:刮向世界的中国之风
游戏设计文档(GDD)编写指南:从概念到实现
三种油烟机结构全面解析及其优劣势分析
干货 | 关于数据的异常检测,看这一篇就够了
统计学中的异常值检测:四分位数与箱线图的应用
吃动物内脏很脏不健康吗?专家这样回答......
UTF-8和UTF-8mb4有什么区别?
工作证明材料有哪些
骨密度检查:原理、方法与注意事项全解析
脚趾头痛是怎么回事?脚趾痛怎么缓解?
强肺最好的锻炼方法,推荐几种有助于增强肺部功能的锻炼
职工大病医疗保险范围及报销标准详解
一文彻底搞懂深度学习:正则化(Regularization)
机器学习中的正则化:L1与L2的差异与应用
桃树花前花后管理黄金法则:两遍药 三肥法实现高产稳收
桃树开花前打什么药最好
LCD液晶显示屏和OLED屏幕哪个好?作电脑显示器哪个更适合你?
温暖家乡味道:自制玉米渣粥的简单做法与营养价值
性能调优秘籍:OpenCV车距检测性能分析与调优
基础代谢率的测量方法:从间接测热到生物电阻抗分析