AI Agent入门:Agent角色指令设计
创作时间:
作者:
@小白创作中心
AI Agent入门:Agent角色指令设计
引用
CSDN
1.
https://blog.csdn.net/csdn_xmj/article/details/140386271
AI Agent作为人工智能领域的重要研究方向,其核心思想是使用语言模型(LLM)作为推理的大脑,通过制定计划和借助工具来解决问题。本文将从Agent的基本概念、架构、实现逻辑以及在LangChain中的具体应用等方面进行详细讲解,并提供角色指令设计的完整指南。
0、概要
Agent的核心思想是使用语言模型(LLM)作为推理的大脑,以制定解决问题的计划、借助工具实施动作。在agents中几个关键组件如下:
- LLM:制定计划和思考下一步需要采取的行动。
- Tools:解决问题的工具
- Toolkits:用于完成特定目标所需的工具组。一个toolkit通常包含3-5个工具。
- AgentExecutor:AgentExecutor是agent的运行时环境。这是实际调用agent并执行其选择的动作的部分。
1、Agent整体架构
代理(Agents)涉及LLM做出决策以确定要采取哪些行动,执行该行动,查看观察结果并重复执行步骤直到完成。
在LLM驱动的自主代理系统中,LLM充当代理的大脑,并辅以几个关键功能:
规划
- 子目标拆解:agent将大型任务拆解为小型的、可管理的子目标,从而能够高效处理复杂任务。
- 反思和改进:agent可以从过去的行为中进行自我批评和自我反省。这种从错误中吸取教训,并对未来的步骤进行改进的思维可以有效提高最终结果。真种思维方式来自ReAct,其大致格式为:Thought: ...Action: ...Observation: ... (Repeated many times)。即为ReAct模式。
记忆
- 短期记忆:上下文学习是利用模型的短期记忆来学习的。
- 长期记忆:通过利用外部向量存储和快速检索,agen可以实现长时间保留和回忆(无限)信息的能力。
工具使用
代理学习调用外部 API 以获取模型权重中缺少的额外信息(通常在预训练后很难更改),包括当前时讯、代码执行能力、对私有信息源的访问等。自然可以自定义工具使用,如本地向量数据库查找。自定义工具方法类:
2、Agent业务实现逻辑
Agent的业务流程如下图所示:
- 用户提出问题
- Agent基于预设的Prompt,将问题包装之后送给LLM
- LLM返回给Agent结果和需要使用的工具
- Agent使用工具获取必要信息
- 工具返回给Agent获取到的信息
- 打包上下文发再次送给LLM
- LLM返回给Agent结果
- Agent给用户返回最终结果
3、LangChain中Agent实现
LangChain为代理提供了标准接口,一系列可供选择的代理类型。langchain中agent有两种主要类型:
动作代理人(Action agents)
在每个时间步上,使用所有先前动作的输出决定下一个动作。
- 接收用户输入
- 决定是否使用任何工具以及工具输入
- 调用工具并记录输出(也称为“观察结果”)
- 使用工具历史记录、工具输入和观察结果决定下一步
- 重复步骤 3-4,直到确定可以直接回应用户
计划执行代理人(Plan-and-execute agents)
预先决定所有动作的完整顺序,然后按照计划执行,而不更新计划。
- 接收用户输入
- 规划要执行的全部步骤序列
- 按顺序执行步骤,将过去步骤的输出作为未来步骤的输入
- 动作代理人适用于小任务,遵循ReAct模式。而计划执行代理人适用于复杂或长时间运行的任务,这些任务需要保持长期目标和重点。
4. Agent示例代码
5、Agent角色指令的概念
5.1 角色指令的定义
- 决定AI智能体的行为
- 决定AI智能体的输出效果
- 匹配场景使用
5.2 角色指令的万能公式
角色设定万能公式 = 角色设定 + 使用场景 + 工具 + 限制 + 输出样式(附加:+例子)
- 角色设定:设定您想让Agent扮演的角色,可以给出一些您期望它具备的能力。
- 使用场景+工具:描述您的应用背景,并给出相应背景下使用的工具,让大模型可以在更为精确的场景下用匹配的工具行动。
- 限制:明确当用户输入什么信息下生成什么样的结果,使得答案更为精准。
- 输出样式:输出风格和格式要求,使大模型更为匹配您的需求。可以附带一些例子,使其理解更为透彻。
6、角色指令的优化策略
6.1 角色设定策略
给出角色设定请尽可能清晰简短,尽量直接表述角色名称,同样也可以附加一些你所期望的能力作为补充。
6.2 工具选择
- 代码解释器:代码解释器支持应用运行代码,具备分析数据、url信息提炼、处理上传文件、数学运算等功能。
- 文生图:大模型将结合文心一格生成对应图像。
- 知识问答-百度搜索:大模型将结合百度搜索结果回答问题。
- 知识问答-知识库检索:大模型将基于您上传的知识文档回答问题,可选择直接上传文件,或选择已有知识集合。知识集合相关内容可查看文档我的知识。
6.3 场景工具策略
- 尽可能一一对应
- 做出描述
- 简洁、直接
6.4 限制
- 尽可能一一对应
- 描述越具体越好
6.5 输出样式策略
- 清晰明了
- 提出具体的要求
- 例如:字数、回答样式等
6.6 给出示例
- 主要用于需要有特定回复的时候
- 请给出特定的问题和相应答复
本文原文来自公众号“机器学习算法与Python实战”。
热门推荐
南充是哪个省的?南充揭秘:这座四川宝藏城市,你真的了解吗?
绩效考评要素中,工作态度如何衡量?
《好一个乖乖女》短剧情深缘浅:一世情缘
深入解析:信道编码与信源编码之间的关键差异
科普时间:ITO、BPO、KPO,揭秘服务外包的三大巨头
麦冬的功效与作用吃法 麦冬现代应用方法有什么
游戏加速器原理解析(提升游戏速度的神奇工具)
肚子大,影响认知
改善孕期失眠状况有什么好的方式
乘用车能耗新规即将落地 让油车更省油、电车更省电
如何依据五行理论挑选适宜的锻炼活动?
奥尔夫音乐教育的特点包括哪5大部分?
游泳池的用水量和用电量如何计算?
不看天意看穿透 Pawn穿甲流船长教学
“流感神药”玛巴洛沙韦真这么神?走访7家药店仅1家有货,医生:孕妇不建议使用
当短剧与网络小说“雷同”,是否构成侵权?法院这样判!
如何进行兼职创业项目管理
120平现代风住宅,满足全家需求,变简单房为温馨家
【乡村振兴】城中镇:星油藤迎来丰收季 特色产业助农增收
钢结构工程一平米造价:成本构成与预算策略全解析
论辛弃疾词意象的创新性和交融性
教师如何控制情绪
水猴子的治疗方法
软件测试零基础如何入门
探秘数学世界:二次函数的奥妙与应用
如何让四年级数学不闷?告别枯燥!四年级数学趣味学习指南!
ENFP人格是什么?特质、优点与潜在挑战全面分析
去义乌搞钱的人,已经后悔了
军旅生涯:选择和未来的考量
班主任如何培养良好的班风学风