问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

深度学习之梯度消失

创作时间:
作者:
@小白创作中心

深度学习之梯度消失

引用
CSDN
1.
https://blog.csdn.net/weixin_49146002/article/details/140309356

在深度学习中,梯度消失是指在反向传播过程中,随着网络层数增加或者在使用特定类型的激活函数(如sigmoid函数)时,梯度逐渐变小并最终趋近于零的现象。这种现象导致在更新参数时,底层网络的权重几乎不会得到有效的更新,从而使得网络在学习过程中变得非常缓慢甚至停滞不前。

以Sigmoid函数为例 ,说明梯度消失问题

Sigmoid函数的导数计算如下:

现在来看Sigmoid函数的导数在什么情况下会导致梯度消失问题:

  1. 导数范围
  • 对于Sigmoid函数,当输入x较大或较小时,Sigmoid函数的值接近于0或1,此时导数的乘积值范围是[ 0, 0.25 ]。这意味着,无论输入是正是负,导数的最大值都不会超过0.25。
  1. 反向传播中的梯度传递
  • 在一个深层的神经网络中,反向传播会通过链式法则将梯度传递回到每一层的权重。每一层的梯度都是上一层梯度和当前层激活函数导数的乘积。
  1. 梯度乘积效应
  • 当网络很深时,梯度会经过多个层级的乘积。由于Sigmoid函数导数的范围是[ 0, 0.25 ],这意味着每传递一层,梯度都会缩小为原来的四分之一左右。因此,随着层数的增加,梯度可能会非常快地趋近于零,尤其是在网络的初始层。
  1. 梯度消失影响
  • 当梯度趋近于零时,网络的底层参数几乎不会得到有效的更新,导致这些层学习到的特征变得不稳定甚至停滞不前。这会影响整个网络的训练效果,尤其是对于较深的神经网络。

因此,Sigmoid函数的导数范围较小,以及其特性使得在深层网络中容易出现梯度消失问题。为了解决这个问题,ReLU及其变种成为了更好的选择,因为它们在大多数情况下能够避免梯度消失,从而加速神经网络的训练。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号