问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

光伏电站逆变器选型方法

创作时间:
作者:
@小白创作中心

光伏电站逆变器选型方法

引用
CSDN
1.
https://m.blog.csdn.net/weixin_43015338/article/details/140354400

光伏逆变器是光伏发电系统中的核心部件,其选型直接影响到电站的运行效率和经济效益。本文将从光伏电站的分类特点出发,详细探讨不同类型逆变器的技术优势和应用场景,为光伏电站的建设方、投资方和运营方提供科学的选型指南。

光伏电站分类及电站特点

按照光伏电站安装环境的不同,光伏电站一般分为荒漠电站、屋顶电站及山丘电站三种。

地形
规模
并网点
主要应用区域
荒漠电站
地势平坦,无遮挡
5兆瓦到几百兆瓦
高压输电网
山丘电站
山地丘陵,地形及遮挡情况多样
几兆瓦到百兆瓦
高压输电网
屋顶电站
建筑屋顶资源,情况多样
几千瓦到几十兆瓦
中低压配电网

荒漠电站

利用广阔平坦的荒漠地面资源开发的光伏电站。该类型电站规模大,一般大于5MW,目前单个50MW以上规模的电站已十分常见;电站逆变输出经过升压后直接馈入110KV、330KV或者更高电压等级的高压输电网;所处环境地势平坦,光伏组件朝向一致,无遮挡。该类电站是我国光伏电站的主力,主要集中在西部地区。

山丘电站

利用山地、丘陵等资源开发的光伏电站。该类电站规模大小不一,从几MW到上百MW不等;发电以并入高压输电网为主;受地形影响,多有组件朝向不一致或早晚遮挡问题。这类电站主要应用于山区,矿山以及大量不能种植的荒地。

屋顶电站

利用厂房、公共建筑、住宅等屋顶资源开发的光伏电站。该类型电站规模受有效屋顶面积限制,装机规模一般在几千瓦到几十兆瓦;电站发电鼓励就地消纳,直接馈入低压配电网或35KV及以下中高压电网;组件朝向、倾角及阴影遮挡情况多样化。该类电站是当前分布式光伏应用的主要形式,主要集中在我国中东部和南方地区。

逆变器分类及特点

光伏逆变器根据其功率等级、内部电路结构及应用场合不同,一般可分为集中型逆变器、组串型逆变器和微型逆变器三种类型。

单机功率
每路MPPT功率
成本
选用情况
集中型逆变器
500-2500KW
125-1000KW/MPPT
组串型逆变器
3-60KW
6-15KW/MPPT(三相)
2-4KW/MPPT(单相)
微型逆变器
1KW以下
0.25-1KW/MPPT
很高

集中型逆变器

主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。目前国内的主流机型以500KW、630KW为主,欧洲及北美等地区主流机型单机功率800KW甚至更高,功率等级和集成度还在不断提高,德国SMA公司今年推出了单机功率2.5MW的逆变器。按照逆变器主电路结构,集中型逆变器又可以分为以下两种类型:

电路结构
交流侧
直流侧
MPPT数
单机型
一个三相功率电路
/
/
模组并联型
几个独立的三相功率电路(模组)组成
并联馈入电网
独立运行模式
并联主从模式
一路

集中型逆变器是目前大部分中大型光伏电站的首选,在全球5MW以上的光伏电站中,其选用比例超过98%。

组串型逆变器

单机功率在3-60KW之间。主流机型单机功率30-40KW,单个或多个MPPT,一般为6-15KW一路MPPT。该类逆变器每瓦成本较高,主要应用于中小型电站,在全球1MW以下容量的电站中选用率超过50%。

微型逆变器

单机功率在1KW以下,单MPPT,应用中多为0.25-1KW一路MPPT,其优点是可以对每块或几块电池板进行独立的MPPT控制,但该类逆变器每瓦成本很高。目前在北美地区10KW以下的家庭光伏电站中有较多应用。

几种逆变器的典型应用如图所示。

如图所示,光伏组件通过串联形成组串,多个组串之间并联形成方阵,集中型将一个方阵的所有组串直流侧接入1台或2台逆变器,MPPT数量相对较少;组串型将一路或几路组串接入到一台逆变器,一个方阵中有多路MPPT,微型逆变器则对每块电池板进行MPPT跟踪。当各组件由于阴影遮挡或朝向不一致时,则会出现串联和并联失配。组串型方案多路MPPT可以解决组串之间并联失配问题,微型逆变器既可以解决组串之间的并联失配,也可以解决组件之间的串联失配。因此,从技术方面看,几种逆变器的本质区别在于对组件失配问题的处理。

以逆变器为核心的设计选型,需要在光伏系统生命周期内寻找总发电量和总成本的平衡点,还要考虑电网接入,如故障穿越能力、电能质量、电网适应性等方面的要求。依据各种逆变器的特点,结合所应用的光伏电站实际情况,从电网友好、高投资回报、方便建设维护等方面进行科学合理的选用。

不同电站的逆变器选型指南

荒漠电站 —— 集中型优势明显

集中型逆变器有以下几方面的优势,是荒漠电站的首选。

更低的初始投资。根据对比分析,集中型方案较组串型逆变器方案在初投上每兆瓦节省投资约26万元。

1MW光伏电站初投建设成本(光伏组件除外)

集中型(以集装箱方案为例)
组串式(以30KW单机为例)
设备名称
规格
直流汇流箱
PVS-16M
交流汇流箱
/
逆变室及配套
10呎集装箱
通讯柜
集成于集装箱平台中
升压变
双分裂
电缆
交直流线缆
小计
40.8~53.6万
逆变器
总投资
70.8~83.6万

发电量与组串型持平:荒漠电站中集中型和组串型发电量基本持平,综合集中型在最高效率和过载能力等方面的优势,集中型发电量略高于组串型。少数电站出现的早晚前后排的遮挡,使用组串型无法克服,需要通过优化组件布局进行规避。

对比维度
集中型
组串型
发电量影响计算与分析
差异(正号表示集中式优于组串式)
逆变转换效率
98.50%
98.30%
组串式DC/DC+DC/AC双级架构,效率低
+0.20%
产品不可用导致的发电量损失
A
A+
综合故障率、单机功率和维护时间影响,组串式损失略小。
-0.01%
配套设备功耗
0.066%
≈0
直流汇流箱与交流汇流箱功耗相当,逆变室风扇功耗折算至一天约3KWh
-0.066%
高温及高海拔导致的发电量损失
0
0.50%
组串式工作于室外,夏季好时段及高海拔应用需降额。换算至全年发电量差异达0.5%左右
+0.50%
遮挡失配损失
A
A+
不存在朝向不一致和遮挡引起的失配问题。云层导致的阴影遮挡损失组串式比集中式低0.5%左右
-0.50%
组件衰减失配
A
A
组件衰减不一致及灰尘遮挡均按正态分布在方阵中,组串式多路MPPT无明显改善。
-0.01%
直流电缆电压差导致的失配损失
0.015%
≈0
集中式逆变器直流电缆电压差导致的失配损失约为150W
-0.015%
电缆损耗
1.86%
2.14%
组串式方案主要为交流损耗,集中式方案主要为直流损耗。
+0.28%
总计
+0.38%

运维更方便更经济。通过对比集中型和组串型主流机型方案在100MW电站的运维数据,发电量损失二者相当;由于组串型设备是整机维护,而集中型设备是器件维护,设备维护成本上,集中型优势非常明显。同时,在占地几千亩的百MW级大规模电站中,对完全分散布置的组串逆变器进行更换,维护人员花在路途上的时间将远高于进行设备更换的时间,这也是组串型的大型电站应用不利因素之一。

集中型和组串型运维费用对比(100MW电站,假设2%的逆变器故障率计算)

集中型方案
组串型方案
年维修费用(质保期外)
100MW0.3元/W2%*25%(25%为单台平均维修成本比例)
年设备维护费:15万元
年设备维护费:55万元
年发电量损失
500KW200台2%6h0.9元/度(单台损失满载发电时间约6h)
年发电损失收入:1.08万元
年发电损失收入:0.18万元
年维护成本
16.08万

集中型方案更加符合电网接入要求。高压输电网对并网的光伏发电在调度响应、故障穿越、限发、超发、平滑、谐波限制、功率变化率、紧急启停等方面都有严格要求。故障穿越是指电网出现短路、浪涌、缺相情况下,逆变器必须能够在625毫秒到几秒的时间内依然输出一定容量的有功和无功功率,确保电力系统继电保护能够正常动作,由于集中型逆变器在电站中台数少,单机功能强大,通讯控制简单,故障期间能够穿越故障的概率远大于组串逆变器。2013年6月中旬国网组织的实地低电压穿越检验,多个型号集中逆变器也不同程度出现脱网情况,设想如果有上千台小型逆变器在大型电站中运行,一旦电网出现故障,由于设备众多控制复杂,电网耦合、谐振概率陡增,组串型逆变器必然会出现大量脱网、甚至设备自身损坏的情况,危及电网安全运行。另外由于逆变器数量太多,无法确保30ms内响应无功调度指令的电网要求。

山丘电站 —— 多MPPT集中型方案为主,也可考虑组串型方案

山丘电站可以看做地势并不平坦的荒漠电站,也是馈入输电网为主,规模多为5MW以上。在山丘电站项目中,通常一个坐标系下规划100多KW左右容量组件(如125KW的组件铺设成同一朝向),达到发电量和投资维护成本的最优比例。针对此应用开发的多MPPT模组模式的集中型逆变器,每路MPPT跟踪100多KW组件,将同一朝向组件的设计占地面积单位缩小到约1000平米,大大提升了施工便利性并有效解决朝向和遮挡问题,同时共交流母线输出,具备集中型逆变器电网友好性特点,是山丘电站的首选方案。

如果所选的山丘电站地形非常复杂,实现100多KW组件同一朝向铺设施工难度很大,可以考虑组串型逆变器作为补充。

屋顶电站 —— 推荐组串型,也可选用集中型方案

屋顶电站的设计相对较为复杂,受屋顶大小、布局、材质承重、以及阴影遮挡等影响,需要通过组件铺设和逆变器选型规划来实现收益最大化。同时组件安装在屋顶,需要考虑火灾防范等安全问题。接入配电网,直接靠近用户负荷,需要考虑用户用电安全性,电能质量符合要求,及与原有配电之间的继电保护协调等。接入用户配电网后,对用户的功率因数影响十分明显,逆变器除了输出有功外,还需要快速的根据光伏系统实时发电情况、用户实时负荷数据以及用户配电房原有的SVC、SVG投入情况综合计算以确定逆变器的实时无功输出容量。因此,屋顶光伏系统方案的选用需要在安全、电网友好、投资回报、维护等多个因素中寻求平衡点。

屋顶结构复杂,存在遮挡或朝向不一致,推荐选用组串型逆变器。屋顶结构复杂,为了简化设计,推荐使用组串型逆变器,并且根据实际屋顶和并网点的位置及并网点电压等级,选择逆变器。组串型逆变器需要具备拉弧监测和关断能力,以有效防止火灾的发生,具备PID消除功能,具备高精度漏电流保护功能和孤岛保护功能等。

大型厂房,考虑到屋顶承重和维护便利性,可选用集中型方案。工业厂房屋顶平坦、规模大、阴影遮挡少、朝向简单、多为10KV中压配电网并网。考虑到大多厂房为彩钢屋顶,承重有限无法安装组串型逆变器,以及日常维护便利、不影响正常生产运行等实际情况,可选用集中型逆变器。

总结

逆变器作为组件和电网之间的桥梁,是光伏系统的核心部件。根据电站规模、以及不同的应用场合,选择合适的逆变器,对系统成本和发电量都大有益处。在规模大、地势平坦的荒漠、滩涂,适合选用集中型逆变器;在规模较大、地势起伏的山丘电站,适合选用多MPPT的集中型逆变器;在规模相对较小、布局多样化的屋顶电站,适合选用组串型逆变器。因地制宜,科学选择光伏电站逆变器,可以确保光伏电站在投资决策阶段少走弯路,在后期运行维护阶段更加可靠高效运行。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号