多毛纲动物的外部形态特征及生态习性简介
多毛纲动物的外部形态特征及生态习性简介
多毛纲动物是环节动物门中最为多样化的一类,拥有超过6000种不同的物种,主要分布在海洋环境中。它们以其独特的体形、复杂的解剖结构和多样的生活方式而著称,是海洋生态系统中不可或缺的重要组成部分。本文将为您详细介绍多毛纲动物的外部形态特征、解剖结构以及生态习性。
外部形态
多毛类动物身体一般呈长圆柱形,背腹略扁,绝大多数种类体长10cm左右,直径2—10mm,但最小的种类体长不足1mm,最长的可达2—3m。一些种类体表具美丽的色彩,如红色、粉色、绿色等。许多种类由于体表角质层中有交叉成层排列的胶原纤维而呈现虹色。
绝大多数的多毛类身体由许多相似的体节组成,例如沙蚕,身体的最前端有发达的口前叶(prostomium)、口前叶上有各种感觉结构,通常包括眼、触手(antennae),腹侧的触须(palps)及纤毛穴或纤毛沟等,口前叶之后为围口节(peristomium),围口节常与其后的一个或几个躯干节愈合。围口节上有感觉作用的围口触须(peristomium cirri),口位于围口节与口前叶之间体节的腹面。口前叶与围口节构成多毛类的头部。沙蚕及许多游走类动物的咽可以翻出,咽上有一对颚及细齿用以捕食。躯干部体节相似,身体末端的体节称为肛节(pygidium),肛节上有肛门。
解剖结构
多毛类动物躯干部每一个体节具有一对疣足,疣足多呈双叉型,它包括一个背叶(notopodium)和一个腹叶(neuro-podium),由背叶与腹叶分别分出背须(dorsal cirrus)和腹须(ve-ntral cirrus)。背叶与腹叶中有一个或几个几丁质的棍状物,称为足刺(acicula),起支持作用,背叶与腹叶的末端常内陷形成刚毛囊,刚毛囊中的单个细胞分泌形成刚毛(setae),背腹叶的刚毛排列成扇形。刚毛如有脱落,刚毛囊中的细胞可重新分泌刚毛,以取而代之。刚毛的形态因种而异,有的种往往具几种刚毛。因此,刚毛的形态常是分类的重要依据之一。刚毛担任着防卫、感觉及支持身体等多种生理功能。 原始的种类、背、腹、叶基本相似,但由于生活方式的改变,疣足可以出现不同的变化,一般是背叶减少,甚至背叶消失。例如叶须虫(Phyllodoce),其背叶消失,仅留有宽大扁平的背须用以运动。毛翼虫(Chaetopterus)的背须变成翼状。用以拨动水流以捕食。
多毛类随不同种及生活方式的不同,其头部、躯干部及疣足都会引起相应的形态改变。隐居的多毛类由于较少运动,头部及其感官常不发达,躯干部常出现分区现象。
多毛纲(5张)
生态习性
生活方式与运动
多毛类动物具有几种不同的生活方式,不同的生活方式使其在形态、运动、习性上都表现出不同,常见的生活方式有以下几种:
表面爬行生活
多毛纲中的许多种类,可以自由生活在浅海海底表面、石块或贝壳下、珊瑚礁及海藻等植物表面,例如沙蚕科(Nereidae)、裂虫科(Syllidae)、叶须虫科(Phyllodocidae)等。营表面生活的多毛类口前叶具触手、眼等感觉器官,疣足发达,躯干部体节相似,一般善于运动。运动是通过疣足、体壁肌肉及体腔液的联合作用而完成的。
多毛类的体壁由角质层、表皮细胞、环肌、纵肌及体腔膜组成。表皮为单层柱状上皮细胞,它向外分泌形成一层很薄的角质层,表皮细胞中也夹有腺细胞,它可以产生荧光素使虫体发出荧光。表皮细胞下的环肌层很薄,纵肌层很厚并被分割成四块,背侧与腹侧各有两块。另外还有斜肌与疣足相连,所有的肌肉均属斜纹肌。纵肌之内为体腔膜,包围着体腔。每体节的体腔在前、后节之间被隔膜分开,在肠道的背、腹面也有肠系膜将体腔左右分割,使每节的体腔囊再区分成左右两半。但也有的种隔膜不完全或完全消失。
Gray(1939)观察并研究了沙蚕的运动模式,发现沙蚕的运动模式也适合于其他游走类动物。他发现沙蚕可做缓慢的步行、迅速的爬行及游泳三种类型的运动。
沙蚕的步行运动是由疣足完成的。运动时身体部分体节(一般是6—8节)为一组,一侧的一组疣足有力地向后移动,并伸出刚毛与足刺与地面接触,支持身体,而另一侧的疣足向前做恢复性移动,同时缩回疣足中的足刺及刚毛,使身体离开地面。如此左右侧疣足一组组的交替移动,同时前、后组的疣足也交替运动,从而使沙蚕做步行前进。
当沙蚕做快速爬行时,除了疣足的运动之外,体壁的肌肉及体腔液也参与了运动。即当一侧疣足伸长向后移动时,该侧体壁的纵肌也最大限度地延伸,相对一侧的疣足回收并向前移动,离开地面,该侧体壁纵肌最大限度地收缩,使身体呈波状运动。肌肉的收缩使体腔液作为一种静力骨骼也起着一定的作用,体壁肌肉的收缩波与疣足的成组交替是一致的,它们共同完成较快速的爬行运动。爬行时往往是十几个体节为一组交替地进行。 游泳运动相似于爬行运动,但肌肉的收缩波更少,往往是几十个体节为一组,但收缩的幅度与频率更大,疣足像桨一样有力的向后划动,使水流产生反作用力,以推动身体更快速的向前游动。