问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

六大开源多模态数据集资源汇总

创作时间:
作者:
@小白创作中心

六大开源多模态数据集资源汇总

引用
1
来源
1.
https://mmssai.com/archives/25108

多模态学习是人工智能领域的重要研究方向,涉及文本、图像、视频等多种数据类型的融合处理。本文汇总了六个重要的开源多模态数据集,这些数据集在规模和质量上都具有显著优势,为研究人员提供了丰富的训练资源。

MINT-1T

MINT-1T 是一个开源的多模态交错数据集,具有 1 万亿个文本标记和 34 亿张图像,比现有开源数据集扩展了10 倍。该数据集的规模和多样性使其成为训练大规模多模态模型的理想选择。

WuDaoCorpora 文本预训练数据集

WuDaoCorpora 是北京智源人工智能研究院(智源研究院)构建的大规模、高质量数据集,用于支撑大模型训练研究。目前由文本、对话、图文对、视频文本对四部分组成,分别致力于构建微型语言世界、提炼对话核心规律、打破图文模态壁垒、建立视频文字关联,为大模型训练提供坚实的数据支撑。

Conceptual Captions

Conceptual Captions 数据集包含超过 300 万张配对图像,每张图像都带有自然语言字幕。这个数据集对于训练图像理解和生成任务的模型非常有帮助。

SBU Captions Dataset

SBU Captions Dataset 包含 100 万张带标题的照片描述图像。这个数据集在规模和多样性上都具有显著优势,适合用于训练图像描述生成模型。

MiniGPT-4

MiniGPT-4 数据集专门用于 MiniGPT-4 模型的第二阶段微调,包含高质量的图文对数据。这个数据集对于研究者来说是一个宝贵的资源,可以帮助他们更好地理解模型在多模态任务中的表现。

Ego-Exo4D

Ego-Exo4D 是一个独特的数据集,它呈现了三种精心同步的自然视频与语言数据集的配对。具体包括:

  1. 专家评论,揭示细微的技能。
  2. 参与者提供的 Narrate-and-act 描述。
  3. 支持浏览的一句话原子描述,用于挖掘数据集并解决视频语言学习问题。

这些数据集为研究人员提供了丰富的资源,可以帮助他们更好地理解多模态数据的特性和应用。希望这些信息对你的研究工作有所帮助!

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号