神经网络算法 - 一文搞懂ANN(人工神经网络)
创作时间:
作者:
@小白创作中心
神经网络算法 - 一文搞懂ANN(人工神经网络)
引用
1
来源
1.
http://www.360doc.com/content/24/0927/09/8102575_1135139181.shtml
人工神经网络(Artificial Neural Network,简称ANN)是人工智能领域的重要研究方向,其灵感来源于生物神经网络。本文将从生物神经网络、人工神经网络、神经网络训练、分类与应用四个方面,带您一文搞懂人工神经网络ANN。
一、生物神经网络
基本定义:
- 百度百科:生物神经网络(Biological Neural Networks)一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
- 维基百科:生物神经网络(Biological Neural Networks)是指生物体内一群由突触相互链接的特定神经元群体,其负责传递、执行一项特定功能,并与其他神经回路共同构筑大脑更高阶的神经网络,并产生个体的意识,协助生物进行思考和行动。
大脑神经元:
- 输入整合:神经元整合来自其他神经元和外部刺激的信号。
- 阈值触发:达到阈值时,神经元触发动作电位。
- 权重调整:连接强度可学习调整。
- 信息存储与传输:神经元负责存储和传输信息,支持生物的感知、思考和行为。
- 神经网络组成:多个神经元以特定方式连接形成神经网络。
大脑神经元结构
二、人工神经网络
基本定义:
- 百度百科:人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。
- 维基百科:人工神经网络(artificial neural network,ANN)简称神经网络(neural network,NN)或类神经网络,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。
基本原理:
人工神经网络结构
- 圆形节点与人工神经元:
- 在人工神经网络中,每个圆形节点代表一个人工神经元。
- 这些神经元通过特定的连接方式相互交互,模拟生物神经网络的工作原理。
- 连接与信号传递:
- 箭头表示从一个神经元的输出到另一个神经元的输入的连接。
- 通过这些连接,信号可以在网络中传递,从一个人工神经元传递到另一个。
- 权重与激励函数:
- 每个节点都代表一种特定的输出函数,称为激励函数。
- 每两个节点间的连接都有一个与之相关的权重值,表示前一个神经元对后一个神经元的影响程度。
- 网络输出:
- 网络的输出会根据网络的连接方式、权重值以及激励函数的不同而变化。
- 通过调整这些参数,人工神经网络能够学习和适应不同的输入模式,产生预期的输出结果。
三、神经网络训练
训练步骤:
- 前向传播:
- 输入数据从输入层开始,逐层通过隐藏层传递。
- 每一层都使用激活函数进行非线性转换。
- 最终,输出层生成预测结果。
- 计算误差:
- 将预测结果与真实标签比较,计算误差(如均方误差或交叉熵损失)。
- 反向传播:
- 使用反向传播算法,将误差从输出层逐层反传至输入层。
- 在此过程中,计算每一层的梯度(误差对权重和偏置的偏导数)。
- 梯度下降:
- 根据计算得到的梯度,使用梯度下降或其他优化算法更新权重和偏置。
- 目标是最小化误差函数,通过逐步调整权重和偏置来改善网络性能。
- 迭代更新:
- 重复上述步骤,直到满足停止准则(如达到最大迭代次数或误差小于预设阈值)。
核心算法:
- 激活函数:
- 作用:决定神经元是否“激活”或“触发”。
- 常见类型:ReLU、Sigmoid、Tanh等。
- 重要性:增加网络的非线性,使其能学习复杂模式。
- 反向传播:
- 作用:神经网络中权重更新的核心算法。
- 过程:计算输出层与真实值之间的误差,并反向逐层传递误差,更新权重。
- 重要性:使网络能基于误差进行自我调整,逐渐逼近目标函数。
- 梯度下降:
- 作用:优化算法,用于在训练过程中最小化损失函数。
- 过程:计算损失函数的梯度,并沿梯度的反方向逐步更新网络参数。
- 重要性:使网络参数逐渐趋近于损失最小的点。
四、分类与应用
算法分类:
- 前馈神经网络 (Feedforward Neural Networks,FNN)
- 特点:数据单向流动,从输入层到输出层。多层网络结构,每层神经元只接收前一层的输出作为输入。
- 应用:感知器、多层感知器、逻辑回归等。
- 循环神经网络 (Recurrent Neural Networks,RNN)
- 特点:具有循环结构,能够处理序列数据和时序依赖关系。神经元的输出可以作为自身的输入,记忆先前状态的信息。
- 应用:文本生成、语音识别、机器翻译等。
- 卷积神经网络 (Convolutional Neural Networks,CNN)
- 特点:适用于处理图像、视频等二维或三维数据。通过卷积层捕捉局部特征,池化层进行下采样,减少参数数量。
- 应用:图像识别、目标检测、图像生成等。
- 长短期记忆网络(Long Short-Term Memory Networks,LSTM)
- 特点:解决长期依赖问题,通过引入记忆单元和门控机制来控制信息的流动。
- 应用:语音识别、文本生成、情感分析等。
- 生成对抗网络 (Generative Adversarial Networks,GANs)
- 特点:结合了生成模型和判别模型的思想,用于生成新的、与真实数据相似的数据。
- 应用:图像生成、视频生成和语音合成等领域有所应用。
实际应用:
- 图像处理与识别
- 图像分类:使用卷积神经网络(如VGG、ResNet)对ImageNet等大型图像数据集进行分类,达到人类级别的准确度。
- 图像生成:GANs(生成对抗网络)用于生成逼真的人脸、风景等图像。
- 语音处理与识别
- 语音识别:RNN和LSTM在语音到文本转换中的应用,如Google的语音识别技术。
- 语音合成:WaveNet等模型用于生成自然的人类语音。
- 自然语言处理
- 文本分类:使用RNN或Transformer结构对文本进行情感分析、主题分类等。
- 机器翻译:GoogleNMT(神经机器翻译)使用Transformer结构进行高质量的文本翻译。
热门推荐
春天为什么给人们以希望?
春暖花开是什么?春暖花开,是万物复苏的盛景!
孔子的六艺:古代教育的基石
金属制造业的未来:回收如何推动可持续增长
楼道声控灯安装注意事项
释放“马拉松+旅游”融合新业态!跑完一场马,爱上一座城
如何完全治疗烤瓷牙根发炎的问题?有效的方法有哪些?
告别“无味生活”:鼻咽癌放疗后味觉恢复的全攻略
自控系统的原理与应用
嘉奖到一等功,需要什么条件才能获得?待遇又是如何?
心理创伤的疗愈之旅:分阶段进行
如何理解和运用市场恐慌指数?这种指数的变化规律是什么?
垂盆草:一种多功能的景天科植物
深圳各类学校招生、在校生、毕业生数据
2025年亚欧天然气价差波动趋势
高弹体材料:性能特点、应用及未来展望
API和ACEA认证级别详解:发动机油品质量标准指南
汉朝名将之间的师徒情深——卫青与霍去病的关系探析
如何避开洗发护发的误区
护发养发的10大误区
非均质脂肪肝严重吗
如何控制项目施工进度:从目标设定到数字化转型的全方位指南
空调压缩机怎样实现有效降温?降温过程中怎样降低能耗?
西海探源:历史、地理与文化的多维视角
家庭自制虎山烤肉:老师傅传授独门秘籍
蛋白质定量分析方法大比拼:从色谱到BCA法
《哪吒2》带火相关专业,半数毕业生认为大学课程过时
冰箱结冰越除越多?这些原因和对策帮你轻松应对
需求管理如何进行监督?实践方法指南
中国民族打击乐的不同演奏形式及功能