问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

HyperLogLog算法原理及代码实现详解

创作时间:
作者:
@小白创作中心

HyperLogLog算法原理及代码实现详解

引用
CSDN
1.
https://m.blog.csdn.net/2401_83916435/article/details/138870550

HyperLogLog是一种用于基数估计的算法,广泛应用于大数据处理场景中。本文将详细介绍HyperLogLog算法的原理、实现方法以及具体的代码示例,帮助读者深入理解这一算法的核心思想和技术细节。

估值优化

关于上述估值偏差较大的问题,可以采用如下方式结合来缩小误差:

  1. 增加测试的轮数,取平均值。假设三次伯努利试验为1轮测试,我们取出这一轮试验中最大的的kmax作为本轮测试的数据,同时我们将测试的轮数定位100轮,这样我们在100轮实验中,将会得到100个kmax,此时平均数就是(k_max_1 + … + k_max_m)/m,这里m为试验的轮数,此处为100.

  2. 增加修正因子,修正因子是一个不固定的值,会根据实际情况来进行值的调整。

上述这种增加试验轮数,去kmax的平均值的方法,是LogLog算法的实现。因此LogLog它的估算公式如下:

HyperLogLog与LogLog的区别在于HyperLogLog使用的是调和平均数,并非平均数。调和平均数指的是倒数的平均数(调和平均数)。调和平均数相比平均数能降低最大值对平均值的影响,这个就好比我和马爸爸两个人一起算平均工资,如果用平均值这么一下来我也是年薪数十亿,这样肯定是不合理的。

使用平均数和调和平均数计算方式如下:

假设我的工资20000,马云1000000000

使用平均数的计算方式:(20000 + 1000000000) / 2 = 500010000

调和平均数的计算方式:2/(1/20000 + 1/1000000000) ≈ 40000

很明显,平均工资月薪40000更加符合实际平均值,5个亿不现实。

调和平均数的基本计算公式如下:

HyperLogLog的实现

根据3.1和3.2大致可以知道HyperLogLog的实现原理了,它的主要精髓在于通过记录下低位连续零位的最大长度K(也就是上面我们说的kmax),来估算随机数的数量n。

任何值在计算机中我们都可以将其转换为比特串,也就是0和1组成的bit数组,我们从这个bit串的低位开始计算,直到出现第一个1为止,这就好比上面的伯努利试验抛硬币,一直抛硬币直到出现第一个正面为止(只是这里是数字0和1,伯努利试验中使用的硬币的正与反,并没有区别)。而HyperLogLog估算的随机数的数量,比如我们统计的UV,就好比伯努利试验中试验的次数。

综上所述,HyperLogLog的实现主要分为三步:

第一步:转为比特串

通过hash函数,将输入的数据装换为比特串,比特串中的0和1可以类比为硬币的正与反,这是实现估值统计的第一步

第二步:分桶

分桶就是上面3.2估值优化中的分多轮,这样做的的好处可以使估值更加准确。在计算机中,分桶通过一个单位是bit,长度为L的大数组S,将数组S平均分为m组,m的值就是多少轮,每组所占有的比特个数是相同的,设为 P。得出如下关系:

  • L = S.length
  • L = m * p
  • 数组S的内存 = L / 8 / 1024 (KB)

在HyperLogLog中,我们都知道它需要12KB的内存来做基数统计,原因就是HyperLogLog中m=16834,p=6,L=16834 * 6,因此内存为=16834 * 6 / 8 / 1024 = 12 (KB),这里为何是6位来存储kmax,因为6位可以存储的最大值为64,现在计算机都是64位或32位操作系统,因此6位最节省内存,又能满足需求。

第三步:桶分配

最后就是不同的数据该如何分配桶,我们通过计算hash的方式得到比特串,只要hash函数足够好,就很难产生hash碰撞,我们假设不同的数值计算得到不同的hash值,相同的数值得到相同的hash值(这也是HyperLogLog能用来统计UV的一个关键点),此时我们需要计算值应该放到那个桶中,可以计算的方式很多,比如取值的低16位作为桶索引值,或者采用值取模的方式等等。

代码实现-BernoulliExperiment(伯努利试验)

首先来写一个3.1中伯努利试验n=2^kmax的估算值验证,这个估算值相对偏差会比较大,在试验轮次增加时估算值的偏差会有一定幅度的减小,其代码示例如下:

package com.lizba.pf;
import java.util.concurrent.ThreadLocalRandom;

/**
* 伯努利试验 中基数n与kmax之间的关系 n = 2^kmax
*
* @Author: Liziba
* @Date: 2021/8/17 23:16
*/
public class BernoulliExperimentTest {
    static class BitKeeper {
        /** 记录最大的低位0的长度 */
        private int kmax;

        public void random() {
            // 生成随机数
            long value = ThreadLocalRandom.current().nextLong(2L << 32);
            int len = this.lowZerosMaxLength(value);
            if (len > kmax) {
                kmax = len;
            }
        }

        /**
        * 计算低位0的长度
        * 这里如果不理解看下我的注释
        * value >> i 表示将value右移i, 1<= i <32 , 低位会被移出
        * value << i 表示将value左移i, 1<= i <32 , 低位补0
        * 看似一左一右相互抵消,但是如果value低位是0右移被移出后,左移又补回来,这样是不会变的,但是如果移除的是1,补回的是0,那么value的值就会发生改变
        * 综合上面的方法,就能比较巧妙的计算低位0的最大长度
        *
        * @param value
        * @return
        */
        private int lowZerosMaxLength(long value) {
            int i = 1;
            for (; i < 32; i++) {
                if (value >> i << i != value) {
                    break;
                }
            }
            return i - 1;
        }
    }

    static class Experiment {
        /** 测试次数n */
        private int n;
        private BitKeeper bitKeeper;

        public Experiment(int n) {
            this.n = n;
            this.bitKeeper = new BitKeeper();
        }

        public void work() {
            for(int i = 0; i < n; i++) {
                this.bitKeeper.random();
            }
        }

        /**
        * 输出每一轮测试次数n
        * 输出 logn / log2 = k 得 2^k = n,这里的k即我们估计的kmax
        * 输出 kmax,低位最大0位长度值
        */
        public void debug() {
            System.out.printf("%d %.2f %d\n", this.n, Math.log(this.n) / Math.log(2), this.bitKeeper.kmax);
        }
    }

    public static void main(String[] args) {
        for (int i = 0; i < 100000; i++) {
            Experiment experiment = new Experiment(i);
            experiment.work();
            experiment.debug();
        }
    }
}

我们可以通过修改main函数中,测试的轮次,再根据输出的结果来观察,n=2^kmax这样的结果还是比较吻合的。

代码实现-HyperLogLog

接下来根据HyperLogLog中采用调和平均数+分桶的方式来做代码优化,模拟简单版本的HyperLogLog算法的实现,其代码如下:

package com.lizba.pf;
import java.util.concurrent.ThreadLocalRandom;

/**
* HyperLogLog 简单实现
*
* @Author: Liziba
* @Date: 2021/8/18 10:40
*/
public class HyperLogLogTest {
    static class BitKeeper {
        /** 记录最大的低位0的长度 */
        private int kmax;

        /**
        * 计算低位0的长度,并且保存最大值kmax
        *
        * @param value
        */
        public void random(long value) {
            int len = this.lowZerosMaxLength(value);
            if (len > kmax) {
                kmax = len;
            }
        }

        /**
        * 计算低位0的长度
        * 这里如果不理解看下我的注释
        * value >> i 表示将value右移i, 1<= i <32 , 低位会被移出
        * value << i 表示将value左移i, 1<= i <32 , 低位补0
        * 看似一左一右相互抵消,但是如果value低位是0右移被移出后,左移又补回来,这样是不会变的,但是如果移除的是1,补回的是0,那么value的值就会发生改变
        * 综合上面的方法,就能比较巧妙的计算低位0的最大长度
        *
        * @param value
        * @return
        */
        private int lowZerosMaxLength(long value) {
            int i = 1;
            for (; i < 32; i++) {
                if (value >> i << i != value) {
                    break;
                }
            }
            return i - 1;
        }
    }

    static class Experiment {
        private int n;
        private int k;
        /** 分桶,默认1024,HyperLogLog中是16384个桶,并不适合我这里粗糙的算法 */
        private BitKeeper[] keepers;

        public Experiment(int n) {
            this(n, 1024);
        }

        public Experiment(int n, int k) {
            this.n = n;
            this.k = k;
            this.keepers = new BitKeeper[k];
            for (int i = 0; i < k; i++) {
                this.keepers[i] = new BitKeeper();
            }
        }

        /**
        * (int) (((m & 0xfff0000) >> 16) % keepers.length) -> 计算当前m在keepers数组中的索引下标
        * 0xfff0000 是一个二进制低16位全为0的16进制数,它的二进制数为 -> 1111111111110000000000000000
        * m & 0xfff0000 可以保理m高16位, (m & 0xfff0000) >> 16 然后右移16位,这样可以去除低16位,使用高16位代替高16位
        * ((m & 0xfff0000) >> 16) % keepers.length 最后取模keepers.length,就可以得到m在keepers数组中的索引
        */
        public void work() {
            for (int i = 0; i < this.n; i++) {
                long m = ThreadLocalRandom.current().nextLong(1L << 32);
                BitKeeper keeper = keepers[(int) (((m & 0xfff0000) >> 16) % keepers.length)];
                keeper.random(m);
            }
        }

        /**
        * 估算 ,求倒数的平均数,调和平均数
        *
        * @return
        */
        public double estimate() {
            double sumBitsInverse = 0.0;
            // 求调和平均数
            for (BitKeeper keeper : keepers) {
                sumBitsInverse += 1.0 / (float) keeper.kmax;
            }
            double avgBits = (float) keepers.length / sumBitsInverse;
            return Math.pow(2, avgBits) * this.k;
        }
    }

    /**
    * 测试
    *
    * @param args
    */
    public static void main(String[] args) {
        for (int i = 100000; i < 1000000; i+=100000) {
            Experiment experiment = new Experiment(i);
            experiment.work();
            double estimate = experiment.estimate();
            // i 测试数据
            // estimate 估算数据
            // Math.abs(estimate - i) / i 偏差百分比
            System.out.printf("%d %.2f %.2f\n", i, estimate, Math.abs(estimate - i) / i);
        }
    }
}
© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号