问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

齐明点与齐明透镜

创作时间:
作者:
@小白创作中心

齐明点与齐明透镜

引用
CSDN
1.
https://blog.csdn.net/qq_41841073/article/details/123945322

薄透镜:

什么叫做齐明透镜:齐明点(aplanatic points)又称为等光程点或不晕点。简单的说就是在此处发出的光线经过折射后可以精确汇聚于一点,没有球差、彗差和像散。

首先,我们分线薄透镜,就是没有厚度的透镜(理想状态),如上图所示,圆心是O点,半径是R,物点在A点,发出入射光线AP,入射角时I, 折射角是I’,像点是A’, 物方孔径角是U,像方孔径角是U’,根据正弦定理,在三角形APO中有:

在三角形A’PO中,有:

又有光线的折射定律:

三角形APO和三角形A’PO中角POQ是三角形的一个角的补角,所以有:

所以由上述三个公式可以得到:

在公式5中,如果我们令OA的长度等于 (n’/n)*R , 那么 sinI’=sinU,也就是I’ = U,再根据公式(4),有 I=U’,所以再公式(6)中,有OA’ = (n/n’) R,这代表着什么呢,也就是说OA等于 (n’/n) R 的情况下,无论我们从入射点以什么角度入射,最终光线的像点(虚像)都在同一个位置,而我们产生像差的原因就是不同角度入射的光线,部分出射光线没有汇聚到同一点所致(球差、像散、慧差等)。所以这样的两个点(A 和 A’)我们称为齐明点。

实际透镜:

对于实际透镜,它是有厚度的,也就是必定有两个面,所以实际的齐明透镜如下所示:

对于实际的齐明透镜的设计如上图所示,透镜的中心厚度是d,第一个球面的曲率半径为R1,第二个球面的曲率半径为R2,其中O1是从左到右第一个球面的球心,O2是第二个球面的球心,O3是折射光线的反向延长点。例如,光线从O1出发,入射光线是O1Q,由于O1是第一个球面的球心,所以光束不会发生偏折,在经过P点的时候发生偏转,反向延长线交光轴与点O3,根据第一部分薄透镜齐明透镜的推导,如果要使得O3和O1要为一对齐明点,必须满足一下条件:

Zemax仿真验证:

根据第二部分的推到,我们可以先定一组仿真数据,例如:

R1 = 10mm

空气折射率n = 1.0

常用BK7玻璃折射率n’ = 1.5168

d = 3.0mm

根据等式(7)可以得出R2 = 8.5707mm

透镜数据编辑器

光路仿真图

zemax2013,百度网盘下载地址

提取码:majx

本文原文来自CSDN博客

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号