问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

被动声学监测设备性能比较及对鸟声识别的影响

创作时间:
作者:
@小白创作中心

被动声学监测设备性能比较及对鸟声识别的影响

引用
1
来源
1.
https://www.biodiversity-science.net/CN/10.17520/biods.2024273

被动声学监测技术在生物多样性保护中发挥着重要作用,尤其在鸟类监测方面。然而,不同录音设备的性能差异可能会影响自动化识别软件正确识别鸟类类别的能力。本研究通过对比6种不同类型录音设备对4种不同频带范围鸟声信号的识别效果,评估了距离、角度、植被类型等因素对识别性能的影响,为选择和部署长期录音监测设备提供了科学依据。

研究背景与意义

被动声学监测技术能够以非侵入的方式进行长期有效的监测,已广泛应用于鸟类的监测。随着监测过程收集到的大量数据需要借助自动化识别技术进行分析处理,不同录音设备的性能差异可能会影响自动化识别软件正确识别鸟类类别的能力。因此,本研究使用国内外6种类型录音设备对4种不同频带范围的鸟声信号进行回放录音,选取BirdNET作为鸟类鸣声自动识别器,对2种植被类型录音环境、5种距离和3种声源方向的回放录音信号进行鸟声识别,评估这些变量对鸟类类别识别性能的影响。

实验设计与方法

实验在广州市的两处不同植被类型的回放实验地点进行,包括草地和林地(图1)。现场回放实验整体设计如图2所示。研究中使用的4种鸟类鸣声信号信息见表1,6台录音设备的参数信息见表2。

图1 位于广州市的两处不同植被类型的回放实验地点。(a)草地; (b)林地。

Fig. 1 Two field playback experiment sites with different vegetation types located in Guangzhou City. (a) Grassland; (b) Forest.

研究结果

研究结果表明,录音设备类型显著影响BirdNET对鸟类类别的识别准确率。总体上,随着距离增加,设备的监测有效性下降,且在50 m或更近距离内,BirdNET的识别准确率显著更高。声源方向对识别性能也有影响,当声源与录音设备方向相反时,识别准确率显著下降。不同设备对4种不同频带范围鸟声信号的识别有效性存在不一致性。此外,植被类型显著影响鸟声信号传播的衰减,草地植被下的总体识别准确率比林地植被高40.1%。

结论与建议

本研究建议,在选择和部署长期录音监测设备前,除评估成本和参数外,还应进行实地录音监测有效性的评估。根据评估结果,优化监测距离和方向设置,以提升监测策略的有效性。

参考文献

[1] Darras K, Furnas B, Fitriawan I, Mulyani Y, Tscharntke T (2018) Estimating bird detection distances in sound recordings for standardizing detection ranges and distance sampling. Methods in Ecology and Evolution, 9, 1928-1938.

[2] Ducrettet M, Forget PM, Ulloa JS, Yguel B, Gaucher P, Princé K, Haupert S, Sueur J (2020) Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biological Conservation, 245, 108574.

[3] Ghani B, Denton T, Kahl S, Klinck H (2023) Global birdsong embeddings enable superior transfer learning for bioacoustic classification. Scientific Reports, 13, 22876.

[4] Goerlitz HR (2018) Weather conditions determine attenuation and speed of sound: Environmental limitations for monitoring and analyzing bat echolocation. Ecology and Evolution, 8, 5090-5100. DOI PMID

[5] Gupta G, Kshirsagar M, Zhong M, Gholami S, Ferres JL (2021) Comparing recurrent convolutional neural networks for large scale bird species classification. Scientific Reports, 11, 17085. DOI PMID

[6] Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A (2018) AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9, 1199-1211.

[7] Hutschenreiter A, Sosa-López JR, González-García F, Aureli F (2023) Evaluating factors affecting species detection using passive acoustic monitoring in neotropical forests: A playback experiment. Bioacoustics, 32, 660-678.

[8] Jin YJ, Zhao LH, Qin YY, Wang JC (2023) Diversity of anurans in the Bawangling Area of Hainan National Park based on auto-recording technique. Biodiversity Science, 31, 22360. (in Chinese with English abstract) DOI

金彦君, 赵龙辉, 覃远玉, 汪继超 (2023) 海南国家公园霸王岭片区无尾两栖类鸣声多样性: 基于自动录音技术. 生物多样性, 31, 22360. DOI

[9] Kahl S, Wood CM, Eibl M, Klinck H (2021) BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236.

[10] Liu H, Liu CH, Zhao TZ, Liu Y (2021) Bird song classification based on improved Bi-LSTM-DenseNet network. In: 4th International Conference on Robotics, Control and Automation Engineering, pp. 152-155. November 4-6, 2021, Wuhan, China.

[11] Metcalf OC, Barlow J, Devenish C, Marsden S, Berenguer E, Lees AC (2021) Acoustic indices perform better when applied at ecologically meaningful time and frequency scales. Methods in Ecology and Evolution, 12, 421-431. DOI

[12] Newson SE, Bas Y, Murray A, Gillings S (2017) Potential for coupling the monitoring of bush-crickets with established large-scale acoustic monitoring of bats. Methods in Ecology and Evolution, 8, 1051-1062.

[13] Parker DM, Bernard RTF (2018) The use of acoustic detectors for assessing bat species richness and functional activity in a South African national park. Mammalia, 83, 53-63.

[14] Pérez-Granados C (2023a) BirdNET: Applications, performance, pitfalls and future opportunities. Ibis, 165, 1068-1075.

[15] Pérez-Granados C (2023b) A first assessment of birdnet performance at varying distances: A playback experiment. Ardeola, 70, 257-269.

[16] Pérez-Granados C, Bota G, Giralt D, Albarracín J, Traba J (2019) Cost-effectiveness assessment of five audio recording systems for wildlife monitoring: Differences between recording distances and singing direction. Ardeola, 66, 311.

[17] Prior L, Aland K, Levengood AL, Potvin DA (2023) Vocal activity of the Eastern Ground Parrot (Pezoporus wallicus wallicus) and implications for acoustic monitoring efforts. Emu-Austral Ornithology, 123, 364-369.

[18] Rhinehart TA, Chronister LM, Devlin T, Kitzes J (2020) Acoustic localization of terrestrial wildlife: Current practices and future opportunities. Ecology and Evolution, 10, 6794-6818. DOI PMID

[19] Winiarska D, Szymański P, Osiejuk TS (2024) Detection ranges of forest bird vocalisations: Guidelines for passive acoustic monitoring. Scientific Reports, 14, 894.

[20] Xu ZH, Liu SY, Zhao Y, Tu WQ, Chang ZF, Zhang ET, Guo J, Zheng D, Geng J, Gu GY, Guo CP, Guo LL, Wang J, Xu CY, Peng C, Yang T, Cui MQ, Sun WC, Zhang JT, Liu HT, Ba CQ, Wang HQ, Jia JC, Wu JZ, Xiao C, Ma KP (2020) Evaluation of the identification ability of eight commonly used plant identification application softwares in China. Biodiversity Science, 28, 524-533. (in Chinese with English abstract) DOI

许展慧, 刘诗尧, 赵莹, 涂文琴, 常诏峰, 张恩涛, 郭靖, 郑迪, 耿鋆, 顾高营, 郭淳鹏, 郭璐璐, 王静, 徐春阳, 彭钏, 杨腾, 崔梦琪, 孙伟成, 张剑坛, 刘皓天, 巴超群, 王鹤琪, 贾竞超, 武金洲, 肖翠, 马克平 (2020) 国内8款常用植物识别软件的识别能力评价. 生物多样性, 28, 524-533. DOI

[21] Zhong EZ, Guan ZH, Zhou XC, Zhao YJ, Li H, Tan SB, Hu KR (2021) Application of passive acoustic monitoring technology in the monitoring of western black crested gibbons. Biodiversity Science, 29, 109-117. (in Chinese with English abstract)

钟恩主, 管振华, 周兴策, 赵友杰, 李函, 谭绍斌, 胡坤融 (2021) 被动声学监测技术在西黑冠长臂猿监测中的应用. 生物多样性, 29, 109-117.

本文原文来自《生物多样性》期刊

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号