问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

克鲁斯卡尔算法(Kruskal)详解

创作时间:
作者:
@小白创作中心

克鲁斯卡尔算法(Kruskal)详解

引用
CSDN
1.
https://blog.csdn.net/weixin_45829957/article/details/108001882

克鲁斯卡尔算法(Kruskal)是一种用于求解加权连通图的最小生成树的算法。本文将通过一个公交站问题的应用场景,详细讲解克鲁斯卡尔算法的基本概念、实现步骤,并通过代码示例帮助读者深入理解。

应用场景 - 公交站问题

看一个应用场景和问题:

  1. 某城市新增7个站点(A, B, C, D, E, F, G),现在需要修路把7个站点连通
  2. 各个站点的距离用边线表示(权),比如A – B距离12公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

克鲁斯卡尔算法介绍

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  2. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
  3. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止

克鲁斯卡尔算法图解说明

以城市公交站问题来图解说明 克鲁斯卡尔算法的原理和步骤:

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。

第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。

第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。

第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。

第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。

第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路-举例说明(如图)

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。

关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。【后面有代码说明】

克鲁斯卡尔算法的代码说明

package com.liu.kruskal;
import java.util.Arrays;
public class KruskalCase {
        private int edgeNum; //边的个数
        private char[] vertexs; //顶点数组
        private int[][] matrix; //邻接矩阵
        //使用 INF 表示两个顶点不能连通
        private static final int INF = Integer.MAX_VALUE;
        
        public static void main(String[] args) {
            char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
            //克鲁斯卡尔算法的邻接矩阵  
              int matrix[][] = {
              /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
        /*A*/ {   0,  12, INF, INF, INF,  16,  14},
        /*B*/ {  12,   0,  10, INF, INF,   7, INF},
        /*C*/ { INF,  10,   0,   3,   5,   6, INF},
        /*D*/ { INF, INF,   3,   0,   4, INF, INF},
        /*E*/ { INF, INF,   5,   4,   0,   2,   8},
        /*F*/ {  16,   7,   6, INF,   2,   0,   9},
        /*G*/ {  14, INF, INF, INF,   8,   9,   0}}; 
              //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
              
              //创建KruskalCase 对象实例
              KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
              //输出构建的
              kruskalCase.print();
              kruskalCase.kruskal();
    }
        public KruskalCase(char[] vertexs, int[][] matrix) {
            // TODO Auto-generated constructor stub
            //初始化顶点数和边的个数
            int vlen = vertexs.length;
            
            //初始化顶点, 复制拷贝的方式
            this.vertexs = new char[vlen];
            for(int i = 0; i < vertexs.length; i++) {
                this.vertexs[i] = vertexs[i];
            }
            
            //初始化边, 使用的是复制拷贝的方式
            this.matrix = new int[vlen][vlen];
            for(int i = 0; i < vlen; i++) {
                for(int j= 0; j < vlen; j++) {
                    this.matrix[i][j] = matrix[i][j];
                }
            }
            //统计边的条数
            for(int i =0; i < vlen; i++) {
                for(int j = i+1; j < vlen; j++) {
                    if(this.matrix[i][j] != INF) {
                        edgeNum++;
                    }
                }
            }
        }
        private void kruskal() {
            // TODO Auto-generated method stub
            int index=0;//表示最后结果数组的索引
            int ends[]=new int[edgeNum];//用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
            //创建结果数组, 保存最后的最小生成树
            Edata[] result=new Edata[edgeNum];
            
            //获取图中 所有的边的集合 , 一共有12边
            Edata[] edges = getEdges();
            System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12
            //按照边的权值大小进行排序(从小到大)
            Arrays.sort(edges);
            
            //遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
            for(int i=0;i<edgeNum; i++) {
                //获取到第i条边的第一个顶点(起点)
                int p1=getPosition(edges[i].start);//p1=4
                //获取到第i条边的第2个顶点
                int p2=getPosition(edges[i].end); //p2 = 5
                
                //获取p1这个顶点在已有最小生成树中的终点			
                int n=getEnd(ends,p1);//m = 4
                //获取p2这个顶点在已有最小生成树中的终点
                int m=getEnd(ends, p2);// n = 5
                //是否构成回路
                if(n!=m) {//没有构成回路
                    ends[n]=m; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
                    
                    result[index++]=edges[i];//有一条边加入到rets数组
                }
            }
            //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
            //统计并打印 "最小生成树", 输出  rets
            System.out.println("最小生成树为");
            for(int i = 0; i < index; i++) {
                System.out.println(result[i]);
            }
        }
        /**
         * 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
         * @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
         * @param i : 表示传入的顶点对应的下标
         * @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
         */
        private int getEnd(int[] ends, int p1) {// i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
            // TODO Auto-generated method stub
            while(ends[p1]!=0) {
                p1=ends[p1];
            }
            return p1;
        }
        /**
         * 
         * @param ch 顶点的值,比如'A','B'
         * @return 返回ch顶点对应的下标,如果找不到,返回-1
         */
        private int getPosition(char ch) {
            for(int i = 0; i < vertexs.length; i++) {
                if(vertexs[i] == ch) {//找到
                    return i;
                }
            }
            //找不到,返回-1
            return -1;
        }
        /**
         * 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
         * 是通过matrix 邻接矩阵来获取
         * EData[] 形式 [['A','B', 12], ['B','F',7], .....]
         * @return
         */
        private Edata[] getEdges() {
            // TODO Auto-generated method stub
            int index = 0;
            Edata[] edges = new Edata[edgeNum];
            for(int i=0;i<vertexs.length;i++) {
                for(int j=i+1;j<vertexs.length;j++) {
                    if(matrix[i][j]!=INF) {
                        edges[index++] = new Edata(vertexs[i], vertexs[j], matrix[i][j]);
                    }
                }
            }
            return edges;
        }
        //打印邻接矩阵
        private void print() {
            // TODO Auto-generated method stub
            System.out.println("邻接矩阵为: \n");
            for(int i = 0; i < vertexs.length; i++) {
                for(int j=0; j < vertexs.length; j++) {
                    System.out.printf("%12d", matrix[i][j]);
                }
                System.out.println();//换行
            }
        }
    
}
//创建一个类EData ,它的对象实例就表示一条边
class Edata implements Comparable<Edata>{
    char start;//边的一个点
    char end;//边的另外一个点
    int weight;//边的权值
    public Edata(char start, char end, int weight) {
        super();
        this.start = start;
        this.end = end;
        this.weight = weight;
    }
    @Override
    public String toString() {
        return "Edate [start=" + start + ", end=" + end + ", weight=" + weight + "]";
    }
    @Override
    public int compareTo(Edata o) {
        // TODO Auto-generated method stub
        return this.weight-o.weight;
    }
    
}
© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号