一文搞明白时序数据输入到LSTM模型的格式(案例解读)
创作时间:
作者:
@小白创作中心
一文搞明白时序数据输入到LSTM模型的格式(案例解读)
引用
CSDN
1.
https://blog.csdn.net/sinat_41858359/article/details/138646611
一、引言
本文将详细介绍时序数据输入到LSTM模型的格式,包括单变量和多变量时序数据的处理方法。通过具体的案例解读,帮助读者理解LSTM模型输入数据的格式要求。
二、实现过程
2.1 单变量时序数据
1、原始data
原始数据是一个144行1列的(144,1)的dataframe:
2、数据集按照8:2划分,并进行归一化处理
train_data_scaler是一个(115,1)的二维数组:
3、创建滑动窗口数据集
将train_data_scaler集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):
def create_sliding_windows(data, window_size):
X, Y = [], []
for i in range(len(data) - window_size):
X.append(data[i:i+window_size, 0:data.shape[1]])
Y.append(data[i+window_size,0])
return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
这里假设窗口window_size设为12,i的范围0-102,103取不到:
- 当i=0时,取出train_data_scaler第【1-12】行第【1】列的12条数据作为X_train[0],取出train_data_scaler第【13】行第【1】列的1条数据作为Y_train[0];
- 当i=1时,取出train_data_scaler第【2-13】行第【1】列的12条数据作为X_train[1],取出train_data_scaler第【14】行第【1】列的1条数据作为Y_train[1];
- ...
- 当i=102时,取出train_data_scaler第【103-114】行第【1】列的12条数据作为X_train[102],取出train_data_scaler第【115】行第【1】列的1条数据作为Y_train[102];
返回的X_train是一个(103,12,1)的三维数组;Y_train是一个(103,1)的二维数组;
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1)
经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。
4、构建 LSTM 模型
# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。
5、训练 LSTM 模型
# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
- X_train是一个(103,12,1)的三维数组,三个维度分别表示(样本数,时间步长,特征数)
- Y_train是一个(103,1)的二维数组,两个维度分别表示(样本数,标签)
- 类似一个103行(121+1)列的表格,前(121)列是特征,第(12*1+1)列是标签
2.2 多变量时序数据
1、原始的data
是一个(5203,5)的dataframe:
2、数据集按照8:2划分,并进行归一化处理
train_data_scaler是一个(4162,5)的二维数组:
3、创建滑动窗口数据集
将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):
def create_sliding_windows(data, window_size):
X, Y = [], []
for i in range(len(data) - window_size):
X.append(data[i:i+window_size, 0:data.shape[1]])
Y.append(data[i+window_size,0])
return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
这里假设窗口window_size设为30,i的范围0-4131:
- 当i=0时,取出train_data_scaler第【1-30】行第【1-5】列的12条数据作为X_train[0],取出train_data_scaler第【31】行第【1】列的1条数据作为Y_train[0];
- 当i=1时,取出train_data_scaler第【2-31】行第【1-5】列的12条数据作为X_train[1],取出train_data_scaler第【32】行第【1】列的1条数据作为Y_train[1];
- ...
- 当i=4131时,取出train_data_scaler第【4132-4161】行第【1-5】列的12条数据作为X_train[4131],取出train_data_scaler第【4162】行第【1】列的1条数据作为Y_train[4131];
返回的X_train是一个(4132,30,5)的三维数组;Y_train是一个(4132,1)的二维数组;
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 5)
经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。
4、构建 LSTM 模型
# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 5)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。
5、训练 LSTM 模型
# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
- X_train是一个(4132,30,5)的三维数组;(样本数,时间步长,特征数)
- Y_train是一个(4132,1)的二维数组;(样本数,标签)
- 类似一个4132行(305+1)列的表格,前(305)列是特征,第(30*5+1)列是标签
三、小结
由于滑动窗口,实际的训练数据数量少一个窗口数量,实际能预测的数据量也少一个窗口数量。
热门推荐
牙齿不齐手术时间需要多久?
2025年钴行业现状分析:我国钴资源严重依赖进口
大幅降薪又单方解约,赔偿!
金鱼缸没有氧气泵怎么办?这些替代方案帮你轻松养金鱼
核磁共振的适应证、禁忌证与检查前准备
信效度解读:信度、效度的概念与类型
盘点中国古代14位著名的女英雄,个个文武双全,流传千古
选购冲锋衣指南:场景分析、性能对比及品牌推荐
非那雄胺与失眠和抑郁
鼻子干,润洗结合
光伏储能虚拟同步机:阻尼系数变化下的低频振荡抑制
脊柱四肢及神经系统检查的步骤有哪些
2025视觉传达设计作品集如何打造高水准竞争力?
遇到电动车自燃应该如何正确扑灭
什么时候会有孕吐反应
孕妇饮食习惯改变能减轻孕吐吗?
《伤寒论》六经病证与五脏六腑的关系
科研项目管理中的进度监控与调整
如何成功配置NTP服务器,确保网络时间同步精准无误
反复瘙痒,外用不仅仅有激素药膏
通俗理解半导体行业基础知识(入门或转行必备)
中南邓氏家族:汉末魏晋时期形成的家族支系
汉能揭秘携手特斯拉细节:薄膜光伏成“离网”充电最佳方案
新电子税局丨车辆购置税申报指引
项目管理差异分析:从识别到持续改进的完整指南
法国交通乘坐超全攻略 | 火车、地铁、大巴以及共享单车等等
电子元件防潮防霉剂避免精密设备氧化损坏
冬天野生龟都呆在哪里?
安全骑行记心中!摩托车、电动车交通事故警示片
冰箱“嗡嗡”作响?这些妙招帮你轻松搞定!