问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

收藏 | 自动驾驶概述

创作时间:
2025-01-21 19:24:08
作者:
@小白创作中心

收藏 | 自动驾驶概述

自动驾驶技术是近年来科技领域最引人注目的发展方向之一。它不仅代表了汽车工业的未来,还蕴含着改变人类出行方式的巨大潜力。本文将从技术原理、应用场景和未来展望等多个维度,全面解析自动驾驶技术的核心要素和发展现状。

自动驾驶原理

自动驾驶就是车辆在无驾驶员操作的情况下自行实现驾驶,它是车辆的能力。比如扫地机器人在扫地的时候就是在自动驾驶。自动驾驶有多种发展路径,单车智能、车路协同、联网云控等。车路协同是依靠车-车,车-路动态信息的实时交互实现自动驾驶。联网云控更注重通过云端的控制实现自动驾驶。本文章阐述的是单车智能。

基本原理概述
单车智能实现的基本原理是通过传感器实时感知到车辆及周边环境的情况,再通过智能系统进行规划决策,通过控制系统执行驾驶操作。

这里面有三个环节:
• 感知:车辆自身以及环境信息的采集与处理,包括视频信息、gps信息、车辆姿态、加速度信息等等。好比是人类的眼睛、耳朵、皮肤一样去收集。具体的比如前方是否有车,前方障碍物是否是人,红绿灯是什么颜色,自车的车速如何,路面情况如何等等信息,都是需要去感知的。
• 决策:依据感知到的情况,进行决策判断,确定适当的工作模型,制定适当的控制策略,代替人类做出驾驶决策。决策主要依赖的是芯片和算法,就好比是人类的大脑。看到红灯,决策需要停止;观察到前车很慢,决定从右侧超车;有小孩突然闯入道路,进行紧急制动。
• 控制:系统做出决策后,自动对车辆进行相应的操作执行。类比人类进行的方向盘以及油门、刹车的操作。系统通过线控系统将控制命令传递到底层模块执行对应操作任务。如左转5度。

硬件系统
硬件系统在各层都有。感知层主要是为自动驾驶系统获取外部行驶道路环境数据并帮助系统进行车辆定位。当前无人驾驶系统中代表性的传感器有摄像头、激光雷达、毫米波雷达、超声波雷达、GNSS/IMU等。它们的工作原理、技术特性各不相同,决定了适用的场景也不同。当前大部分车辆都是采用多种传感器相融合的方式以应对各种可能发生的情况,保证较好的实际使用效果。主流传感器的优缺点参考如下图。其他还有一些传感器在一些方案中也会被使用,如麦克风阵列,红外相机等。

感知层会收集大量的自车和环境数据,决策层需要自动驾驶芯片流畅地处理这些数据才能保证系统及时作出正确的决策,从而控制车辆自动行驶并确保安全。智能系统的三大要素是数据、算法和算力,而算力的根本就是芯片。芯片是决策层为重要的硬件。目前能够量产自动驾驶芯片的主要是Mobileye(英特尔收购)、英伟达、特斯拉。Mobileye市场规模,应用于L2的产品有统治级别的市场占有率。英伟达是传统巨头,有算力强的芯片。Tesla的芯片自产自销,能够量产高算力芯片。国内也有一家后起之秀地平线,芯片也已经量产,奋起直追中。

控制层则相对简单,主要是线控。线控就是用线(电信号)的形式来取代机械、液压或气动等形式的连接,实现电子控制,从而不再需要驾驶员的力量或者扭矩的输入。对于自动驾驶来说,**的三个线控子系统是线控油门、线控转向、线控制动。我们常常听到自动驾驶各领域都有很多独角兽。奇怪的是线控方面资本市场却少有提及,但它也是自动驾驶生态中重要的一个环节。大概是因为线控技术直接涉及风险,大家有意无意地忽视。

目前主流的L4&L4+自动驾驶硬件架构都是依赖激光雷达的,包括华为ADS、百度Apollo、Waymo、Mobileye等等。特斯拉的方案则没有激光雷达,个人认为关键原因是激光雷达成本高落地难,而视觉方案可以快速落地形成数据算法迭代优化的闭环。但激光雷达数据质量实在好,对视觉方案有极大的补充价值,甚至是主导价值,而且成本已经大幅下降。所以特斯拉可能成也视觉(更快落地)、败也视觉(效果上限较低)。

软件系统
我们以业界某款开源平台架构来理解一下自动驾驶在软件方面需要具备的能力。
• 地图引擎(Map):提供道路、周边建筑等地图信息,高精地图还包含全局车道、曲率、坡度、红绿灯、护栏情况等等信息。如地图可以透出前方右拐急弯曲率及下坡坡度。
• 高精定位(Localization):定位是一个重要模块,L3及以上自动驾驶场景需要高精定位,是车辆信息感知的一个重要元素。如定位到车辆在行进方向右边第二车道,该车道只能直行不能右拐。
• 感知(Perception):感知模块接受并处理传感器信息,从而识别自车以及周边的情况。如感知到车辆的速度,感知到前方50米有一个行人。
• 预测(Prediction):预测模块主要用于预测感知到的障碍物的运动轨迹。如在行驶中,感知到左侧道路有一辆车,根据车辆的状态和历史运动轨迹,预测车辆后续运动轨迹,识别是否有碰撞风险。
• 规划(Planning):根据感知到的信息,规划出一条到达目的地的行进路线,而且还需要规划出未来一段时间内,每一时刻所在位置的精细轨迹和自车状态。如规划轨迹向左偏移并加速,超车后回到道路中心线附近。
• 控制(Control):如字面意思,通过指令控制车辆硬件进行操作,如发送减速指令到制动器执行制动操作。
• 交互界面(HMI):人类在中控屏幕上看到的人机交互模块。如自动驾驶系统通过HMI向乘客实时展示系统识别到的自车位置及周边障碍物信息,有助于提升乘客的安全感。HMI在人车共驾的过度阶段更有价值。
• 实时操作系统(RTOS):Real Time Operation System 根据感知的数据信息,及时进行计算和分析并执行相应的控制操作。

自动驾驶在感知、预测、高精定位等模块,对机器学习都有很深的应用和依赖。自动驾驶在一定程度上也促进了机器学习的发展。

如下为整个架构的数据流向图,从中可以看出各模块的上下游依赖关系。感知是预测的上游;感知、预测、定位、地图又是规划的上游;而控制则是规划的下游;HMI则处于整个系统的下游。从中我们也可以看出,各模块对于高精地图都有依赖,可见高精地图的重要性。高精地图采集分为集中制图和众包制图两种,未来*可能普遍采用的方式是集中制图+众包更新,也可能是直接全众包SLAM制图,够用就好。

自动驾驶意义

自动驾驶如此火热,自然是因为它能够解决一些问题。

降低出行成本
自动驾驶可以替代或者部分替代司机的工作,降低司机成本的投入。中国卡车司机就有3000万,假设驾驶员1个月工资1万,那么一年就是3.6万亿。假设卡车都实现了无人驾驶,那这里可以节约多少成本?送快递、送外卖的从业人员也是千万级别,无人物流车替代,可以节约多少成本?目前用户打车的钱很大一部分是给司机的,如果司机的钱免了,对应用户的乘车成本也会有降低。如果是自己开车也等于是低价请了个司机,享受了更高的服务。如果进入到无人驾驶时代,那么连考驾照的钱都可以省了。自动驾驶发展也会促进车辆共享化从而提升车辆利用率以及降低对停车位等资源的占用成本。

提升通行效率
拥堵是出行的**大痛点问题。拥堵的原因有三个方面:

  1. 人为因素,如低速占位行驶、路口抢行、路口顶牛等行为造成或加剧了拥堵。
  2. 交通设施不完备,如限速,车道不足,红绿灯等因素。
  3. 车辆故障,如突然无法启动等问题导致车道阻塞。
    三个原因中,人为因素的比重**,交通设施汽车,车辆故障再次。而自动驾驶可以实现远超人类驾驶的规范化驾驶。在相同流量的情况下,自动驾驶可以有效减少拥堵,进而提升通行效率。

提升出行安全
80%以上的交通事故是人为因素造成的,如酒驾、疲劳驾驶、超速行驶、跟车距离过小、不按规定让行等。而自动驾驶可以实现完全规范化的驾驶,没有情绪、100%遵守交规,从而有效提升出行安全。

提升出行体验
这个价值主要是针对辅助驾驶部分的功能。不是终目标,但却是当下大家能够确实收获的好处。自动驾驶的各种功能可以降低驾驶的难度,有效提升驾驶体验。

自动驾驶分级

自动驾驶分级如下表。实现L2级别自动驾驶的车厂比较多,L3则基本都是期货。目前行业在努力攻克的主要是L3和L4级别的自动驾驶。值得注意的是有些厂商并不是L1-L2-L3-L4逐级演进的。比如华为进入这个领域,更注重从城市道路场景出发,直接以L4为目标进行设计和技术落地,升维思考、降维打击。

L1自动驾驶
L0就是无自动驾驶功能,不做阐述。L1表示车辆可以自动完成横向或纵向操控中的一项,其余所有工作仍然需要人类来完成。虽然比较低级,但却已经很实用,如ACC、AEB、LKA等。
• ACC:Adaptive Cruise Control 自适应巡航控制
ACC是系统通过传感器监测与前车的距离和相对速度,结合乘坐体验,计算出合适的油门或者刹车量进行车辆纵向的控制,*终实现自动跟车或定速行驶的辅助驾驶功能。
• AEB:Autonomous Emergency Braking 自动紧急制动
AEB是一种汽车主动安全技术。AEB通过传感器持续监测自车与周边障碍物的距离,如果距离小于警报距离则发出警报,如距离进一步小于安全距离,则即使驾驶员没有操作,AEB也会自动进行制动控制,避免碰撞发生。

• LKA:Lane Keeping Assist 车道保持辅助
LKA是在车道偏离预警系统(LDW:Lane Departure Warning)的基础上增加纠正的控制。LKA通过传感器监测自车与车道中心线的相对位置,如果发现车辆偏离车道,则向驾驶员发出警告,在特定设定下可以通过自动转向控制使得车辆重新回到车道行驶。LCC(Lane Centering Control 车道居中控制 )也会作为一个的辅助功能提供。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号