问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

OCT:光学相干层析成像技术

创作时间:
作者:
@小白创作中心

OCT:光学相干层析成像技术

引用
1
来源
1.
https://www.biomart.cn/67989/docs/88752.htm

光学相干层析成像技术(OCT)是一种非接触、无创的成像技术,能够在微米级分辨率下对生物组织和材料进行断层扫描。自上世纪90年代问世以来,OCT技术已经在生物医疗、工业检测等多个领域展现出巨大的应用潜力。本文将为您详细介绍OCT技术的基本原理、系统结构及其在不同领域的应用前景。

OCT技术的基本原理

光学相干层析成像技术(OCT)在上世纪90年代即被开发用于生物学的无创断层扫描成像。OCT使用低相干干涉术,以类似于超声脉冲回波成像的方式,从内部组织微结构的光学散射信号生成截面二维图像。OCT具有微米级的纵向和横向空间分辨率,可以检测到小至入射光功率~10^-10的反射信号。对透明、半透明、浑浊材料内部可以有很好的细节检测能力,对于不可穿透材质也可轻松实现表面轮廓扫描。针对表面以及内部缺陷识别应用来说,是对于传统相机视觉技术的有力补充。

一般的光学相干断层扫描(OCT)成像系统示意图如上所示。来自低相干光源的光被引导到一个 2 × 2 的光纤耦合器,形成一个简单的迈克尔逊干涉仪结构。

假设耦合器将入射光功率均匀地分成样品臂和参考臂,参考光纤的光入射到参考延迟线/反射镜,并定向返回同一光纤。样品光纤的光入射到扫描仪上,扫描仪将光束聚焦在样品上,并通过振镜结构在一个或两个横向方向上使光斑进行扫描,来自样品的后向散射或直接反射的光通过相同的光学扫描系统重新定向返回到样品臂光纤中,在光纤耦合器中与返回的参考臂光混合,并在光电接收器或检测器形成干涉信号,这个信号经过处理后即可反映深度轴向信息,即A-scan信号;通过样品臂振镜或者机械移动扫描点即可得到一组A-scan信号组成的截面二维图像,称为B-scan信号,同样的,如果在x、y两个方向进行扫描即可得到体扫描3D图像,也称为C-scan

如果放在机器视觉领域,我们可以抽象地理解OCT技术为一种自带光源的点探测相机,结合不同规格扫描振镜实现不同的视野与扫描方式(线扫、面扫),而其内部干涉光路则定义了它的“焦距”,因为只有在满足干涉条件的位置才能形成清晰的干涉信号。

OCT根据原理还可分成时域(TD)、谱域(SD)、扫频域(SS)OCT技术。对于谱域OCT来说,光源常使用红外波段的宽带光源,其探测器为线阵CMOS或者InGaAs。

这里的光源带宽影响扫描深度与分辨率,硬件处理模块通过快速傅里叶变换计算干涉项,一次扫描即可获得单点全深度信息,A-scan速率一般在几十kHz量级,意味着即使512像素以上大小的需要实时检测切面B-scan图像也可以达到几十帧。在SS-OCT技术中还可以更快。

OCT与传统检测技术如超声、共聚焦显微镜、CT等技术的分辨率和成像深度比较如上图。OCT的轴向图像分辨率范围为1 ~ 15 um,由光源的相干长度决定。在大多数生物组织/半透明工件中,由于光散射的衰减,成像深度被限制在2-3毫米,而在空气中扫描表面轮廓的场景则可以实现约6-10mm的成像深度,OCT技术填补了毫米成像深度和微米成像分辨率尺度间成像领域的空白,且技术仍在迭代更新。在一些科研项目中,也有实现米级成像范围的远距离OCT(如下图,来自麻省理工论文)。

从这项技术发明以来这近三十年期间,因其具有非接触、非侵入、无损伤/辐射、成像分辨率高、成像速度快、灵敏度高、实时性好、三维成像、易与内窥镜技术相结合、操作简单等优点,从生物医疗开始已拓展到越来越多的无损检测研究、工业生产、以及食品药品等应用领域。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号