数字图像处理中的图像复原与重建技术详解
数字图像处理中的图像复原与重建技术详解
数字图像处理中的图像复原与重建技术是恢复图像原始质量的关键步骤。本文将从图像退化的原因出发,系统地阐述图像复原的基本模型、噪声模型(包括高斯噪声和椒盐噪声),以及各种空间滤波器(如均值滤波器、统计排序滤波器)和频率域滤波方法。此外,还将介绍逆滤波和维纳滤波等高级复原技术。
图像退化与复原的基本概念
在图像形成、记录、处理和传输过程中,由于成像系统、记录设备、传输介质和处理方法的不完善,会导致图像质量的下降,这种现象被称为图像退化。与之相对的是图像增强,它旨在改善图像质量,提高图像的可懂度,更偏向主观判断。而图像复原则是根据图像畸变或退化的原因,进行模型化处理,将质量退化的图像重建或恢复到原始图像。
图像退化/复原过程的模型
图像复原的过程可以表示为:
其中,f(x, y)表示输入图像,退化后的图像用g(x, y)表示,退化过程可以分为退化函数h(x, y)以及加载在图像上的噪声η(x, y)表示,经过复原滤波器后便能得到复原后的图像。具体来说,在空间域中退化图像可由下式给出:
g(x, y) = h(x, y) * f(x, y) + η(x, y)
频率域表示为:
G(u, v) = H(u, v) * F(u, v) + N(u, v)
噪声模型
高斯噪声
高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。高斯噪声信号x的概率密度函数如下:
p(x) = 1 / (sqrt(2π)σ) * e^(-(x-μ)^2 / (2σ^2))
椒盐噪声
椒盐噪声也称泊松噪声,是由图像传感器、传输信道及解码处理等产生的黑白相见的亮暗点噪声。椒盐噪声是指两种噪声:椒盐噪声 = 椒噪声 + 盐噪声。盐噪声一般是白色噪声,椒噪声一般是黑色噪声,前者高灰度噪声,后者属于低灰度噪声。
仅有噪声的复原——空间滤波
当一幅图像中唯一存在的退化是噪声时,可以使用空间滤波来降低噪声。
均值滤波器
均值滤波器有多种类型,包括算术均值滤波器、几何均值滤波器、谐波均值滤波器和逆谐波均值滤波器。其中,算术均值滤波器是最简单的,它在指定区域中计算被污染图像的平均值。
统计排序滤波器
统计排序滤波器的响应是基于由滤波器包围的图像区域中像素点的排序。其中,中值滤波器使用一个像素邻域中的灰度级的中值来替代该像素的值。
自适应滤波器
自适应滤波器的行为变化基于由m×n矩形窗口定义的区域内图像的统计特性,它的性能要明显优于前面介绍的滤波器,代价是滤波器的复杂度。
频率域滤波消除周期噪声
频率域技术滤除周期噪声可行的原因是周期噪声在对应于周期干扰的频率处,以集中的能量脉冲形式出现。滤除的方法之一是选择性滤波器(带阻、带通和陷波)。
逆滤波和维纳滤波
逆滤波复原步骤包括对退化图像进行二维离散傅里叶变换,计算系统点扩散函数的二维离散傅里叶变换,然后进行逆滤波计算。维纳滤波是一种建立在最小化统计准则的基础上的复原方法,它可以看成是最优的。
通过实验了解下维纳滤波的复原效果,效果如下:
本章中的复原结果都是有前提的,即图像退化可建模为一个线性的、位置不变的过程,以及与图像值不相关的加性噪声。就像在第3章和第4章中那样,一定的复原任务,譬如降低随机噪声,是在空间域中使用卷积模板来执行的。我们也发现频率域对于降低周期性噪声和对于某些重要的退化建模是很理想的,如在图像获取期间因为运动导致的模糊。我们还发现,对于表达复原滤波器来说,频率域也是很有用的工具,如维纳滤波器和约束最小二乘方滤波器。