监督学习和无监督学习的区别?
创作时间:
作者:
@小白创作中心
监督学习和无监督学习的区别?
引用
CSDN
1.
https://blog.csdn.net/BugNest/article/details/145044236
监督学习和无监督学习是机器学习中的两种基本方法,它们之间存在显著的区别。以下是对这两种学习方法的详细对比:
一、定义与目标
- 监督学习:
- 定义:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。
- 目标:通过学习输入与输出之间的映射关系,能够对新的输入数据进行准确预测或分类。
- 无监督学习:
- 定义:一种不需要已知类别标签的训练数据的机器学习方法。
- 目标:发现数据中的内在结构和模式,如数据的相似性、关联性和异常点。
二、数据集与标签
- 监督学习:
- 数据集:包含输入和对应的输出(标签)。
- 标签:每个输入数据都有一个对应的标签,用于指导模型的训练。
- 无监督学习:
- 数据集:只包含输入,没有对应的输出或标签。
- 标签:无需标签,模型通过探索数据自身的特性来学习。
三、常见算法与应用
- 监督学习:
- 常见算法:线性回归、逻辑回归、决策树、支持向量机、神经网络等。
- 应用:图像识别、语音识别、自然语言处理、推荐系统等。
- 无监督学习:
- 常见算法:聚类算法(如K均值聚类、层次聚类)、主成分分析(PCA)、关联规则挖掘等。
- 应用:市场细分、异常检测、数据降维、社交网络分析等。
四、模型训练与评估
- 监督学习:
- 训练:通过最小化损失函数来训练模型,使预测输出与真实输出之间的误差最小化。
- 评估:使用交叉验证、测试集等方法评估模型的性能,常见的评估指标包括准确率、召回率、F1分数等。
- 无监督学习:
- 训练:模型通过探索数据自身的特性来学习数据的结构和模式。
- 评估:由于无监督学习没有明确的输出标签,因此评估标准相对模糊。常见的评估方法包括聚类效果的可视化、内部指标(如轮廓系数)等。
五、优缺点
- 监督学习:
- 优点:预测准确性高,当训练数据丰富且代表性强时效果最佳。
- 缺点:数据标记成本高,泛化能力受训练数据限制。
- 无监督学习:
- 优点:无需标记数据,适合处理大规模未标记数据集。
- 缺点:无法直接预测类别,聚类结果受算法参数和数据分布影响。
综上所述,监督学习和无监督学习在定义与目标、数据集与标签、常见算法与应用、模型训练与评估以及优缺点等方面都存在显著的区别。在实际应用中,需要根据问题的类型和可用的数据类型来选择合适的学习方法。
热门推荐
吕布的宿命:三欠曹操,两负刘备
人工神经网络的原理和多种神经网络架构方法
《穿越火线》:如何选个炫酷昵称?
合同违约条款范本及违约责任详解
企业福利平台结算系统设计指南
如何应对电话骚扰并投诉
徐州乐园全攻略:从温和项目到刺激挑战,一文详解游玩路线与限制须知
如何用客户反馈提升你的职场沟通技能?
2025省考公务员报名时间确定,这些重要节点错过等一年
关于血型的那些事
维克多·弗兰克的生命智慧:寻找意义的三大途径
西门子PLC编程:G71指令快速上手指南
听觉过敏:症状、诊断与治疗全解析
肌肉不堪久坐重负?八大伤害与应对指南
集合竞价技巧:助你优化投资策略
电话销售如何快速判断客户需求的话术方法
月工作总结报告撰写指南:从回顾到规划的五大步骤
普惠保险“大盘点”:谁的未来发展空间更广阔?
北京交通大学揭秘:4D打印的未来材料
外贸中如何判断客户是不是有效客户
程序员节特辑:JNI助你跨平台开发如虎添翼!
“乌托邦”真的值得追求吗?
《陶渊明笔下的桃花源记:理想乡的诗意表达》
考研集训营有用吗?这份利弊分析帮你做出明智选择
跷二郎腿的危害与正确坐姿指南:从西医到中医的全方位解析
一天只吃一顿饭,3个月减重35公斤,出大事了……
情人节背后:那些动人的爱情传说
物理学的重塑:两次重大危机如何革新科学
让芳香疗法为浪漫情人节施展魔法
《哪吒2》票房破百亿背后的湘军力量